Unit File

This is an explanation of how units work in Payday 2. This may not be 100% perfect, but it should
give the basic idea of what's going on.

A “unit” in Payday 2 is an object like a mask or an enemy. It basically sets properties, applies
effects, and specifies textures for the units.

F

les

.unit - Points to a *.object file for further loading data about the unit. Specifies
dependencies like sounds, effects, or animations. Establishes the extensions, which
consist of properties for the unit like inventory, Al, damage, movement, sounds, or
interactions. Sometimes can specify a path for the .unit file that is supposed to be loaded
when the unit is spawned over network. And finally can specify the location of sound
sources for the unit.

.object - Points to a .material_config file, .sequence_manager file and the animations.
For some units, there are “bodies” that establish which parts of bodies are enabled, and
sets properties for them like friction, collision class, and a template. Then, there are
“constraints”, which mostly establish how far limbs can rotate. After that,
“decal_surfaces” are established, which basically assigns a specific decal material to parts
of bodies. And finally, “graphics” are specified, they set which parts of model are enabled,
and sometimes sets a LOD for them depending on distance from the unit.

.model - This is the model for the unit.

.material_config - Contains a list of materials with specified templates that are applied
to the textures. Points to *.texture files to use for reflections, diffused textures and normal
maps.

.cooked physics - Not much is known about this file but it is related to physics of the
unit.

.sequence_manager - This file contains sequences which can be run on the unit.
.texture - This is a renamed .dds texture file.

Loading Order

Units in Payday are loaded in a specific order. If a file in this chain has an error, the unit will not
work correctly and potentially crash the game.

The loading order is as follows: .unit file is loaded first (this file has to point to the .object file to
load it next), next the .object file is loaded (this file often points to the .material_config file, which
contains textures for the model to use), next either .model or .material_config is loaded
(.material_config has specified texture files that it loads and applies a specific template with effects
to them. And .model contains the model and retrieves materials from the .material_config).

.unit Detalls

The .unit file is the first to get loaded when accessing the unit. This file is in .xml format, with a
fairly simple structure. Most of the things in these .unit files are pretty self explanatory. However,
the weapon units, mask units, and character units are all different. As they are obviously none of
them are the same at all! Here is a sample of a .unit file.

Sample Breakdown of a .unit file

As an example, | will be looking at the cloaker's (spook's) unit files. First, the .unit file of a cloaker
are located at (units\payday2\characters\ene_spook_1\ene _spook 1.unit).

<unit type="being" slot="12">
<anim_state_machine name="anims/units/enemies/cop/cop_machine" />

<object file="units/payday2/characters/ene_spook_1l/ene_spook 1" />

<dependencies>
<depends_on animation_state_machine="anims/units/enemies/cop/cop_machine"
animation_def="anims/units/enemies/cop/cop_def" />
<depends_on bnk="soundbanks/regular_vox" />
<depends_on effect="effects/particles/character/cloaker_goggle" />
<depends_on unit="units/payday2/characters/ene_acc_baton/ene_acc_baton" />

</dependencies>

<extensions>
<extension name="unit_data" class="ScriptUnitData" />
<extension name="base" class="CopBase" >
<var name="_tweak_table" value="spooc" />
<var name="_default_weapon_id" value="mp5_tactical" />
</extension>
<extension name="inventory" class="Coplnventory" />

<extension name="brain" class="CopBrain" />

<extension name="anim_data" class="PlayerAnimationData" />
<extension name="character_damage" class="CopDamage">
<var name="_head_body_name" value="head" />
<var name="_death_sequence" value="kill_spook_lights" />
</extension>
<extension name="movement" class="CopMovement" >
<var name="_footwear" value="boots" />
<var name="_anim_global" value="cop" />
</extension>
<extension name="interaction" class="IntimitatelnteractionExt" >
<var name="tweak_data" value="intimidate" />
</extension>
<extension name="network" class="NetworkBaseExtension" />
<extension name="damage" class="UnitDamage" >
<var name="_skip_save_anim_state_machine" value="true" />
</extension>
<extension name="contour" class="ContourExt" />
<extension name="sound" class="CopSound" />

</extensions>

<network sync="spawn" remote_unit="units/payday2/characters/ene_spook_1l/ene_spook 1 husk"/>

<sounds>
<default_soundsource source="Hips"/>
</sounds>

</unit>
Please notice the structure: anim_state_machine, then object, then dependencies, then extensions,
then network, then sounds. Sometimes, if this structure is not followed, the game will crash. (Note,

Payday: The Heist sometimes does not follow this structure, so PD1 .unit files would often result in
a crash).

Let's breakdown this file by sections.

<unit type="being" slot="12">

The first section states that this unit is a human being (I am assuming when you hit it, blood will
come out). And that it's in slot 12 (I believe slot number can be ignored).

<anim_state_machine name="anims/units/enemies/cop/cop_machine" />

The second section establishes the animations that this unit will use. In this case, the cloaker will
be using cop animations.

<object file="units/payday2/characters/ene_spook_1l/ene_spook 1" />

The third line establishes where the next file is, the .object file. This file will be loaded after the
.unit (Please note that the path does not contain an extension, the game already knows that you
pointed at a .object file.

<dependencies>
<depends_on animation_state_machine="anims/units/enemies/cop/cop_machine"
animation_def="anims/units/enemies/cop/cop_def" />
<depends_on bnk="soundbanks/regular_vox" />
<depends_on effect="effects/particles/character/cloaker_goggle" />
<depends_on unit="units/payday2/characters/ene_acc_baton/ene_acc_baton" />

</dependencies>

This block of code establishes the dependencies that this unit has. This unit is dependent on the
cop animations using the cop animation definitions. Next, this unit is dependent on the sound bank
“soundbanks/regular_vox” (this soundbank is related to speech). Next, this unit is dependent on an
effect, the “effects/particles/character/cloaker_goggle”, in the .object file this effect will be
assighed to a specific location. And finally, this unit is dependent on another unit
“units/payday2/characters/ene_acc_baton/ene_acc_baton” (this counts as an enemy accessory,
thus the name “ene_acc”). And once again, not a single path has an extension, the game knows.

<extensions>
<extension name="unit_data" class="ScriptUnitData" />
<extension name="base" class="CopBase" >
<var name="_tweak_table" value="spooc" />
<var name="_default_weapon_id" value="mp5_tactical" />
</extension>
<extension name="inventory" class="Coplnventory" />
<extension name="brain" class="CopBrain" />
<extension name="anim_data" class="PlayerAnimationData" />
<extension name="character_damage" class="CopDamage">
<var name="_head_body_name" value="head" />
<var name="_death_sequence" value="kill_spook_lights" />
</extension>
<extension name="movement" class="CopMovement" >
<var name="_footwear" value="boots" />
<var name="_anim_global" value="cop" />

</extension>

<extension name="interaction" class="IntimitatelnteractionExt" >
<var name="tweak_data" value="intimidate" />
</extension>
<extension name="network" class="NetworkBaseExtension" />
<extension name="damage" class="UnitDamage" >
<var name="_skip_save_anim_state_machine" value="true" />
</extension>
<extension name="contour" class="Contourkxt" />
<extension name="sound" class="CopSound" />

</extensions>

This chunk of code assigns basic unit things, like Al, inventory, sounds, etc. Most of them stay the
same, but variables change. The “unit_data” extension is present practically in every .unit file and
does not seem to change. The “base” extension is usually present on characters or usable objects.
In “base” the class changes depending on the unit, and the variables in the extension also change.
For this unit, the variables set the identity of this unit as “spooc” and assigns it “mp5_tactical” as a
default weapon. The “inventory” seems to be only present on units that can carry items (like ammo
or other weapons). The class usually stays as “Coplnventory”, but there could be multiple kinds of
“inventory”. The “brain” assigns Al to the unit, in this case “CopBrain” is assigned. The
“anim_data” is currently unknown to me, but | am guessing that these are the kinds of animations
a unit can perform, “PlayerAnimationData” is assighed. The “character_damage” assigns various
things regarding the damage the unit will take, “CopDamage” is assighed. Two variables are
assigned as well, “_head_body _name” signifies what part of body (according to model) is
considered to be the head, the “_deadh_sequence” signifies what sequence this unit will perform at
death. The “movement” assigns what kind of movement this unit will perform, “CopMovement” is
assignhed, as well as two other variables. The first variable “ footwear” states what kind of shoes
the unit will have, “boots” are assigned. Second variable “_anim_global” states what kind of
movement animations this unit will perform, “cop” animations are assigned. The “interaction” is
usually present with units that can be interacted with, | am lacking detail as to what kind of
interaction, “IntimatelnteractionExt” is assigned, with one variable. The variable “tweak _data” is
pretty much always present with “interaction”, “intimate” is assigned. The “network” extension is
usually present on units that can be spawned or changed during the game,
“NetworkBaseExtension” is assigned. The “damage” extension is usually present with units that
can deal damage, “UnitDamage” is assigned with one variable. The variable

“ skip_save_anim_state_machine” is related to animations and | am unsure about the exact usage
of this, variable is set to “true”. The “contour” extension is usually present with units that can have
an outline, class of “ContourExt” is assigned. The “sound” extension determines what kind of
sounds this unit can make, “CopSound” is assigned.

<network sync="spawn" remote_unit="units/payday2/characters/ene_spook_1l/ene_spook 1 husk"/>

This section is usually present with units that can be spawned or changed during the game. This is
responsible for syncing the spawn, by specifying the .unit file to be loaded on the clients. (Lobby
host does not use this, only the client).

<sounds>
<default_soundsource source="Hips"/>

</sounds>

This section specifies the source of sound for the unit. Apparently the cloaker (and all other
enemies) make sounds from their “Hips”.

After the .unit file is loaded, the .object gets loaded. Not all commands were listed in this example,
so other commands will be listed below in the “Other .unit commands” section with their
explanations.

Other .unit commands

Other .unit commands will be added here as research progresses.

.0bject Detalls

The .object file is second to get loaded when accessing the unit. This file is in .xml format, with a
fairly simple structure. Most of the things in these .object files are pretty self explanatory, and
about 80% unique to the unit, as it heavily replies on the model and the names of body parts in the
model. The .object file usually contains properties of model parts like materials,
sequence_manager, bodies, constraints, effects, graphics, and lights. Here is a continuation of the
unit breakdown from previous section.

Sample Breakdown of a .object file

Following from the previous section, the .object file path of a cloaker was assigned as
“units/payday2/characters/ene_spook 1/ene spook 1” (that's without the .object at the end). The
.object files tend to be repetitive, as they assign each “body” in a model, specific settings. And for
sake of space, the .object file will be cut down to include as little repetition as possible.

<dynamic_object>
<diesel materials="units/payday2/characters/ene_spook_1/ene_spook 1" orientation_object="root_point" />
<sequence_manager file="units/payday2/characters/ragdoll" /> <animation_def

name="anims/units/enemies/cop/cop_def" />

<bodies>

<body name="body" enabled="true" template="character" friction="0.6" collision_class="ragdoll">
<object name="Spinel"/>
<object name="c_capsule_body" collision_type="capsule"/>
</body>
<body name="mover_blocker" enabled="true" template="mover_blocker" keyframed="true"
collision_class="ragdoll">
<object name="root_point"/>
<object name="c_capsule_mover_blocker" collision_type="capsule"/>
</body>
PART OF THE FILE WAS SNIPPED HERE*

<!-- RAGDOLL -->
<body name="rag_Head" enabled="false" template="corpse" friction="0.01" sweep="true"
collision_class="ragdoll" keyframed="false" collision_script_quiet_time="0.5" collision_script_tag="small"
ray="block" lin_damping="0.6" ang_damping="20" collides_with="0" tag="flesh" restitution="0">
<object name="Neck" />
<object collision_type="sphere" mass="4" padding="-15" name="c_sphere_head_ragdoll"/>

</body>

<body name="rag_Hips" enabled="false" template="corpse" friction="0.6" sweep="true"
collision_class="ragdoll" keyframed="false" collision_script_quiet_time="0.5" collision_script_tag="large"
ray="block" lin_damping="0.4" ang_damping="20" collision_group="1" collides_with="0" tag="flesh"
restitution="0">
<object name="Hips" />
<object collision_type="capsule" mass="22" padding="-5" name="c_sphere_Hips" />
</body>
*KPART OF THE FILE WAS SNIPPED HERE***

</bodies>

<constraints>
<constraint type="ragdoll" name="RightArm" enabled="false">
<param body_a="rag_Spine2" body b="rag RightArm"/>
<param pivot="position:RightArm"/>

<param twist_axis="yaxis:RightArm" twist_min="-60" twist_max="70" twist_freedom="20"/><!-- X axis --

<param plane_axis="xaxis:RightArm"/><!--Y axis -->
<param cone_y="35" cone_z="40" cone_freedom="10"/>
<param damping="1" spring_constant="200" min_restitution="0"/>

</constraint>

<constraint type="limited_hinge" name="RightForeArm" enabled="false">
<param body_a="rag_RightArm" body _b="rag_RightForeArm"/>
<param pivot="position:RightForeArm"/>

<param min_angle="-60" max_angle="60" axis="yaxis:RightForeArm" twist freedom="5"/> <!-- X axis --

<param plane_axis="xaxis:RightForeArm"/> <!-- Y axis -->

<param damping="1" spring_constant="200" min_restitution="0"/>
</constraint>
*#kPART OF THE FILE WAS SNIPPED HERE***

</constraints>

<decal_surfaces default_material="flesh" />

<effects>
<effect_spawner name="es_light" enabled="false" object="e_light"
effect="effects/particles/character/cloaker_goggle" />

</effects>

<graphics>

<graphic_group name="character" enabled="true" culling_object="g_body">

<lod_object name="lod_body">
<object name="g_body" [Tlenabled="true" max_distance="3000" max_draw_lod="0" />
<object name="g_body lod1" [lenabled="true" lod="1" />

</lod_object>

<object name="s_body" enabled="true" shadow_caster="true"/>

<object name="g_il" [TJenabled="false" />

</graphic_group>

</graphics>

<lights>
<light name="point_light" enabled="false" multiplier="reddot" far_range="25" near_range="1" falloff="4.0"
type="omni|specular" />

</lights>

</dynamic_object>

Please notice the structure: diesel materials, then sequence_manager, then animation_def, then
bodies, then constraints, then decal_surfaces, then effects, then graphics, and then lights.
Sometimes, if this structure is not followed, the game will crash. (Note, Payday: The Heist
sometimes does not follow this structure, so PD1 .object files would often result in a crash).

Like before, Let's breakdown this file by sections.

<diesel materials="units/payday2/characters/ene_spook_1/ene_spook_ 1" orientation_object="root_point" />

This section specifies the location of the the .material_config file, along with the orientation
position. This is present in most units that have a model (some weapons don't seem to specify
this). The .material_config file is specified to be
“units/payday2/characters/ene_spook_1/ene_spook_ 1" (once again, no .material_config, game
knows) with the orientation at “root_point” of the model.

<sequence_manager file="units/payday2/characters/ragdoll" />" " <animation_def

name="anims/units/enemies/cop/cop_def" />

This section specifies what sequence_manager file to use. And what animations to use. (Sometimes

these are separated into two lines). The sequence_manager file is specified to be located at
“units/payday2/characters/ragdoll” (no .sequence_manager extension). And the
“anims/units/enemies/cop/cop_def” animation definition is set to be used.

<bodies>

[Tl<body name="body" enabled="true" template="character" friction="0.6" collision_class="ragdoll">

[ITl<object name="Spinel"/>

[ITl<object name="c_capsule_body" collision_type="capsule"/>

[TI</body>

[MI<body name="mover_blocker" enabled="true" template="mover_blocker" keyframed="true"
collision_class="ragdoll">

[ITl<object name="root_point"/>

[ITl<object name="c_capsule_mover_blocker" collision_type="capsule"/>

[MI</body>

+PART OF THE FILE WAS SNIPPED HERE*

<!-- RAGDOLL -->

[Tl<body name="rag_Head" enabled="false" template="corpse" friction="0.01" sweep="true"
collision_class="ragdoll" keyframed="false" collision_script_quiet_time="0.5" collision_script_tag="small"
ray="block" lin_damping="0.6" ang_damping="20" collides_with="0" tag="flesh" restitution="0">

[IT]<object name="Neck" />

[ITl<object collision_type="sphere" mass="4" padding="-15" name="c_sphere_head_ragdoll"/>

[T</body>

[TI<body name="rag_Hips" enabled="false" template="corpse" friction="0.6" sweep="true"
collision_class="ragdoll" keyframed="false" collision_script_quiet_time="0.5" collision_script_tag="large"
ray="block" lin_damping="0.4" ang_damping="20" collision_group="1" collides_with="0" tag="flesh"
restitution="0">

[ITl<object name="Hips" />

[ITl<object collision_type="capsule" mass="22" padding="-5" name="c_sphere_Hips" />

[MI</body>

4PART OF THE FILE WAS SNIPPED HERE*

[</bodies>

This section pretty much defines collisions and ragdolls per body parts in the model. For the first
“body” is enabled (as it's set to true), the templace for “character” is used with friction of “0.6",
and a collision class of “ragdoll”. This seems to include the object “Spinel” and “c_capsule_body”
of collision type “capsule”. Both of those objects are most likely defined in the .model file. THIS IS
NOT FINISHED!!!

<constraints>
<constraint type="ragdoll" name="RightArm" enabled="false">
<param body_a="rag_Spine2" body_b="rag_RightArm"/>
<param pivot="position:RightArm"/>

<param twist_axis="yaxis:RightArm" twist_min="-60" twist_max="70" twist_freedom="20"/><!-- X axis --

<param plane_axis="xaxis:RightArm"/><!-- Y axis -->
<param cone_y="35" cone_z="40" cone_freedom="10"/>
<param damping="1" spring_constant="200" min_restitution="0"/>

</constraint>

<constraint type="limited_hinge" name="RightForeArm" enabled="false">
<param body_a="rag_RightArm" body_b="rag_RightForeArm"/>
<param pivot="position:RightForeArm"/>
<param min_angle="-60" max_angle="60" axis="yaxis:RightForeArm" twist freedom="5"/> <!-- X axis -->
<param plane_axis="xaxis:RightForeArm"/> <!-- Y axis -->
<param damping="1" spring_constant="200" min_restitution="0"/>
</constraint>
¥PART OF THE FILE WAS SNIPPED HERE*

</constraints>

This section deals with constraints of rotations and movement. THIS SECTION NEEDS MORE
EXPLANATION, BUT IS SELF EXPLANATORY!!!

<decal_surfaces default_material="flesh" />

This little section states that the default material for the unit is “flesh”. There are a few other
default materials besides flesh, and sometimes they're even applied per body part in this section.

<effects>
[<effect spawner name="es_light" enabled="false" object="e_light"
effect="effects/particles/character/cloaker_goggle" />

</effects>

This section applies effects to the unit. | am not 100% certain on the application process. | believe
that the effect under the name “es_light” is being applied to the object “e_light” (probably stated in
.model) from effect file “effects/particles/character/cloaker_goggle” (once again, .effect extension
is not needed).

The name of the effect does not matter; it can be set to anything you want. It seems to be only for
referential purposes. The effect does not necessarily need to be applied to an "e_light" object, as
other objects in the file will work as well (such as "g_body" or "root_point").

<graphics>

<graphic_group name="character" enabled="true" culling_object="g_body">

<lod_object name="lod_body">
<object name="g_body" [Tlenabled="true" max_distance="3000" max_draw_lod="0" />
<object name="g_body lod1" [lenabled="true" lod="1" />

</lod_object>

<object name="s_body" enabled="true" shadow_caster="true"/>

<object name="g_il" [TJenabled="false" />

</graphic_group>

</graphics>

In this section, there are two things happening. First, the LOD is being set per distance (in
centimeters). So at distance < 3000 cm the default LOD model with be drawn to screen. If distance
> 3000 cm then the LOD1 will be drawn. Second, some elements of the model are
enabled/disabled in this section. As you can see, the “s_body” is enabled (with “true”) and is set to
cast a shadow with shadow_caster set to “true”. And then there is “g_il” which is disabled. Please
note that not all elements of the .model can be disabled here. Only the ones you know (i.e. the
ones already listed in this .object file) or the ones you know from the model (currently there is no
way of looking up element names from models.

<lights>

<light name="point_light" enabled="false" multiplier="reddot" far_range="25" near_range="1" falloff="4.0"
type="omni|specular" />

</lights>

This section is for creating a light on the unit. For this unit in particular, it creates a glow around
them that gets enabled via the sequence_manager. This “point_light” has a range of 1 - 25 with the
falloff of “4.0” (I think the falloff is for the type) and type of “omni|specular”. | am not certain about
what this type specifically does, but it certainly acts as an effect on this “point_light”.

After the .object file is loaded, either the .model or the .material_config file get loaded. Not all

commands were listed in this example, so other commands will be listed below in the “Other
.object commands” section with their explanations.

Other .object commands

Other .object commands will be added here as research progresses.

.model Detalls

Currently there are no details on the .models, as the filetype has not been completely reverse
engineered.

Research Notes:

.model contains hashed names of objects using Hash64, uint64. (Currently looking into editing elements)

Bones have been redone since Payday: ™ "'The " ""Heist , they now don't include 4th elements of fingers.
Each bone is specified as a 3D Object, which contains rotation matrix, position, and a parent ID.

Observations:

*It's near impossible to find model names, as they are hashed and unhashing them would be near impossible. They
are not part of idstring.

*'m assuming .material_config hashes the name of material, and applies it to the model. If it doesn't exist, it still
applies (to nothing).

*|t would be easier to create models from scratch, as you will know the names of all objects and materials, so you
would have full control over the model.

.material_config Details

https://wiki.modworkshop.net/Payday:_The_Heist

The .material_config file is loaded sometime after the .object file. This file is in .xml format, with a
fairly simple structure. Most of the things in these .material_config files are pretty self explanatory,
and is unique to the unit, as it heavily replies on the model and the names of body parts in the
model. The .material_config file contains texture paths (diffused and bump map textures),
sometimes reflection textures, sometimes material_textures, and sometimes some variables for
the render_template. Here is a continuation of the unit breakdown from previous section.

Sample Breakdown of a
.material _config file

In this example we will be using the cloaker. The .material_config file path of a cloaker was
assigned as “units/payday2/characters/ene_spook _1/ene_spook 1" (that's without the
.material_config at the end). The .material_config files tend to be repetitive, as they assign each
the requested material names in the model, specific textures and effects. And for sake of space,
the .material_config file will be cut down to include as little repetition as possible.

<materials version="3" group="ene_spook_1">
<material name="mtr_body"
render_template="generic:DIFFUSE_TEXTURE:NORMALMAP:RL_COPS:SKINNED_3WEIGHTS" version="2">
<bump_normal_texture [TTifile="units/payday2/characters/shared_textures/spook_heavy nm"/>
<diffuse_texture [TITfile="units/payday2/characters/shared_textures/spook_heavy df'/>
</material>
<material name="mtr_il"
render_template="generic:ALPHA_MASKED:DIFFUSE_TEXTURE:OPACITY_TEXTURE:RL_COPS:SELF_ILLUMINATION"
version="2">
<diffuse_texture [TITfile="units/payday2/characters/shared_textures/spook_il"/>
<self_illumination_texture [Tffile="units/payday2/characters/shared_textures/spook_il"/>
<opacity_texture [[TTffile="units/payday2/characters/shared_textures/spook_il"/>
<variable [TTTTTivalue="reddot" type="scalar" name="il_multiplier"/>
</material>
<material name="shadow_caster" render_template="shadow_caster_only:SKINNED_1WEIGHT" version="2"/>

</materials>

There is no specific structure to follow. This file seems to be a list of materials with some variables
attached. The only real problems that can occur are incorrect textures, broken model, no model at
all (but a floating blob of gray).

Let's breakdown this file by sections.

<materials version="3" group="ene_spook_1">

This establishes the group that these materials belong to. | am not sure as to what group names

can be given, but it's best to keep them similar to the original model names. The version does not
seem to matter.

<material name="mtr_body"
render_template="generic:DIFFUSE_TEXTURE:NORMALMAP:RL_COPS:SKINNED_3WEIGHTS" version="2">
<bump_normal_texture [ITffile="units/payday2/characters/shared_textures/spook _heavy nm"/>

<diffuse_texture [TTTffile="units/payday2/characters/shared_textures/spook_heavy df'/>

</material>

This section identifies a material “mtr_body” with a render_template of
“generic:DIFFUSE_TEXTURE:NORMALMAP:RL _COPS:SKINNED 3WEIGHTS” and version of “2” (once
again, does not seem to matter). The material name has to match the one listed in the .model file,
otherwise the model will be broken. The render_template is a predefined template, and CANNOT

SIMPLY BE APPENDED, there is a list of available render_templates with explanations HERE. This
material has two variables included (these are present with almost every material). The
“bump_normal_texture” specifies where the bump map of this material is, for this example it's
located at “units/payday2/characters/shared_textures/spook heavy nm” (once again, the .texture
extension is not needed). Followed by a “diffuse_texture”, which is the actual texture of the
material, located at “units/payday2/characters/shared_textures/spook_heavy df”. Both the

“bump_normal_texture” and the “diffuse_texture” are passed to the render_template to be
handled.

<material name="mtr_il"
render_template="generic:ALPHA_MASKED:DIFFUSE_TEXTURE:OPACITY_TEXTURE:RL_COPS:SELF_ILLUMINATION"
version="2">

<diffuse_texture [TITffile="units/payday2/characters/shared_textures/spook_il"/>

<self_illumination_texture [Tffile="units/payday2/characters/shared_textures/spook_il"/>

<opacity_texture [TITffile="units/payday2/characters/shared_textures/spook_il"/>

<variable [TTTITivalue="reddot" type="scalar" name="il_multiplier"/>

</material>

This section right here is almost identical to the previously viewed material. To differentiate this
new material, it has a different, uses a different render_template, and has a few new variables. The
diffuse texture serves the same purpose as before. The new, “self_illumination_texture” points to
the path of “units/payday2/characters/shared_textures/spook_il”. This “self_illumination_texture” is
related to the render_template. Same with "opacity_texture " and the “variable”. All of them are
passed to to the render_template to be handled.

<material name="shadow_caster" render_template="shadow_caster_only:SKINNED_1WEIGHT" version="2"/>

https://wiki.modworkshop.net/Payday_2/Render_Templates_List

This last section is responsible for casting shadows. With name “shadow_caster” and
render_template of “shadow_caster_only:SKINNED_ 1WEIGHT". A list of available render_templates

with explanations HERE.
After the .material_config file is loaded, nothing else loads. Not all commands were listed in this

example, so other commands will be listed below in the “Other .material_config commands”
section with their explanations.

Other .material _config commands

Other .material_config commands will be added here as research progresses.

Revision #3
Created 25 October 2019 16:47:33 by Luffy
Updated 2 July 2021 16:43:16 by Luffy

https://wiki.modworkshop.net/Payday_2/Render_Templates_List

