Quick introduction to Hooks

This guide is intended for people new to PAYDAY 2 Lua modding and explains different methods of
hooking functions and when to use them. I'll go over the most commonly used methods of function
hooking and explain how they work and why we need them.

Why bother using hooks?

You may ask yourself: Why all this complicated stuff? Can't | just copy and paste the original
function and make my edits to it? While yes, you could do a complete function override, you really
shouldn't unless it is absolutely unavoidable. In the worst case this will crash the game when an
update changes some things in that function and you will have to copy and change the new
function again to fix it. You will also run into the risk of breaking mods that rely on the same
function, as your mod would completely undo changes of other mods if it loaded afterwards.

The major takeaway is therefore: Doing proper function hooks increases compatibility with other
mods and game updates and is less likely to break over time. With that out of the way, let's see
what kind of hooking techniques exist.

Types of hooks

PostHook

Depending on what your mod is trying to achieve, you will have different needs when hooking
functions. The most common scenario is probably adding additional data or code on top of an
existing function after it executes. For this we generally use SuperBLT's PostHook, which registers a
custom function that is executed whenever the game executes the target function. Using a
PostHook is simple and can be used if you don't need to change the functionality of the original
function and just want to add some additional code.

Let's look at an example: We want to change the HP of the regular street cops. We can do this after
the cop's stats have been initialized, which happens in the function CharacterTweakData:_init_cop .
Looking at this function in the game code we can see that the cop's health is set here. Since we
just want to change the HP and still want all the other things to be initialized like usual we can add
code in the form of a PostHook.

We would do that like this:

Hooks:PostHook(CharacterTweakData, "_init_cop", "our_unique_hook_id", function (self)
[self.cop.HEALTH_INIT = 10

end)

When the game runs the original CharacterTweakData:_init cop function, all the cop data will be
initialized as usual, but immediately afterwards, BLT will execute our hook function, changing the
cop's health to the value we supplied.

The function you specify for the PostHook will be supplied with the same arguments that the
original function will be called, so if you need them, you can specify them.

Note that CharacterTweakData:_init_cop(presets) is functionally identical to
CharacterTweakData._init_cop(self, presets) (specifically note . instead of : between CharacterTweakData
and _init_cop). This is important for your hook function if you plan to make use of the function
arguments and the reason why you usually see self as the first argument in a hook function even if
the original function doesn't have it.

If you are unsure about wether to include self in the list of arguments for your hook, just
remember that if the function is defined with a : in the game code, the first argument to itin a
hook should be self .

If you need access to what the original function of your hook returned you can use Hooks:GetReturn()
which will return any values that have been returned by hook functions and the original function
call that ran before your hook function. Let's say you made a new custom enemy and for making it
work properly you need to add it to the character map (a list of all enemies the game goes over
and generates contour mappings for). The character map is returned by the function
CharacterTweakData:character map and the function itself creates and returns a local table with all
characters in it.

Hooks:PostHook(CharacterTweakData, "character_map", "our_other_unique_hook_id", function (self)
Hocal char_map = Hooks:GetReturn()

[table.insert(char_map.basic.list, "custom_enemy_name")

Oreturn char_map

end)

You can see that it easy to access the return value and change it (in this case the return value is a
table and we insert an entry into it. Another thing that you should notice is that you can return
values from a hook, this will override the return value of the original function (and any function
hooks on the same function that came before yours).

PreHook

Very similar to a PostHook, the only difference is that it will be executed before the original
function is called. Less commonly used but useful if you need to change some values or add
additional code right before a function call. Note that setting fields that are created or set in the

function in the original code will have no effect since your code runs before the original function
and the original call will just override any values that it sets.

Another niche use case for a PreHook is changing function arguments that are of table type, as
tables are passed by reference and you can therefore change the content of the table which will
then be passed to the original function. As other data types are passed by value this only works for
tables.

Function wrapping

The above mentioned hooking methods should cover a lot of usecases already, but there are some
cases where they are not usable. Let's say you want to change the arguments the original function
is called with or stop the function from being called based on some condition. This simply can not
be done with a PostHook or PreHook since all function arguments except tables are passed by
value and PostHook or PreHook will always run the original function.

In this case, you need to do a function wrap, often referred to as old_init. This involves saving the
original function into a variable and then overriding the function with a new one. In the new
function you then call the original function manually and do whatever else you need to do.

local build_suppression_original = CopDamage.build_suppression
function CopDamage:build_suppression(amount, ...)

(if amount == "max" then

[Tlamount = 2

Jend

Oreturn build_suppression_original(self, amount, ...)

end

Some notes on this code:

e Using ... in the function arguments represents any number of additional unspecified
arguments. We can use this to make sure we pass every argument that our function is
called with to the original function call without actually caring what they are. If you need
some of the actual arguments, you can simply list all arguments up to the ones you need
and then follow them by It is suggested to always use ... at the end of the argument
list, even if you already listed all of the original arguments in case any other mod or game
update adds additional arguments to that function call.

e We have to make sure to return whatever the original function is expected to return, as
returning a wrong type or nothing at all can lead to crashes that are hard to pin down.

So you chose to override after all

If none of the methods above can be applied to what you want to do, you will have to override the
entire function. However, SuperBLT provides a way to do this in a way that at least keeps any
hooks made by other mods intact.

An example could be the following:

Hooks:OverrideFunction(GroupAlStateBesiege, "assign_enemy_to_group_ai", function (self)
[}- Your code here

end)

Note that if another mod used SuperBLTs PostHook or PreHook on the same function, they will still
be called and you can maintain some compatibility with other mods. Redefining the function
without making use of Hooks:OverrideFunction will remove all hooks that were made by mods that
ran before yours which could lead to unexpected behavior.

Revision #7
Created 15 January 2023 19:38:07 by Hoppip
Updated 1 March 2023 15:35:42 by Hoppip

