Diesel Engine

Category for Diesel Engine related docs

SystemFS
Bundle File

Unit File

Skin map textures (df cc)

Animated Models

Material Config XML

e Object Xml

e Sequence Manager XML

SystemFS

SystemFsS is a class to read and write files and more.
Currently, it works only in the Windows version of the game.

I'll add more info later right now I'll just list the functions and their parameters.

Functions:
open(path, flags)
close(file)
exists(path)
Is_dir(path)

system path(path)
parse xml(path)
make_dir(path)

delete file(path)

can delete a folder also.

list(dir, directories)

returns a table of files by default and folders if directories parameter is true

copy _file(from, to)

copy _files async(files, callback)

each file needs to be inside the files table so for example if | want to move file x to path y it's
gonna be: SystemFS:copy files_async({"x", "y"}) the callback has two parameters - success and
message if the copy failed then success will be false and message should say something.

can_write to(path)

checksum(path)

Bundle File

*0Originally written by Simon W.

Bundle Database (BLB)

The Bundle Database file, also known as “bundle_db.blb” and “all.blb”, defines all file entries with
their hashed path, hashed extension, language, and a unique ID. Special things to note:
“idstring_lookup.idstring_lookup” has an ID that is equal to the count of file entries.

File structure of the .blb format

Header

uint32 languages_tag //Payday 2 = "8C F2 18 00" Payday: The Heist = "9C 2B F2 00"
uint32 languages_count

uint32 languages_count //should be same value as previous uint32
uint32 languages_offset //offset to the beginning of languages section
uint32 unknown

uint32 unknown

uint32 unknown

uint32 file_entries_count

uint32 file_entries_count //should be same value as previous uint32
uint32 file_entries_offset //offset to the beginning of file entries section
uint32 unknown

uint32 unknown

uint32 unknown

uint32 unknown

Languages section

FOREACH(languages_count)
uint64 language_hash

uint32 language_representation
uint32 unknown

END FOREACH

File entries section

FOREACH(file_entries_count)

uint64 file_entry_extension_hash

uint64 file_entry _path_hash

uint32 file_entry_language //one of the language representations
uint32 unknown

uint32 file_entry_ID

uint32 unknown

END FOREACH

Packages (bundles)

Bundles are diesel's packages containing files with corresponding IDs. The package name can be
looked up with Bundle Modder by using the hash converter on the bundle name with “use hex” and
“swap endianness” (this does not work with all_x bundles).

Which then can be used in lua to load packages. Bundles are split into two files, header and data.
The header files end with “* h.bundle” while data files end with “*.bundle”.

File structure of the h.bundle
(Header)

Header section

uint32 section_size

uint32 section_tag //Since update 70, this tag is present in every file. Payday: The Heist is present only if bundle

is all_x
uint32 file_entries_count
uint32 file_entries_count //should be same value as previous uint32

uint32 file_entries_offset //if section_tag == "00 00 00 00" then file_entries_offset += 4

uint32 file_entries_tag //Payday 2 = "E8 EB 18 00" Payday: The Heist = "88 EE 18 00"
FOREACH(file_entries_count)
uint32 file_entry_ID
uint32 file_entry_address //address within the *.bundle file
IF bundle is all_x then
uint32 file_entry_length //the length of this file entry
END IF
END FOREACH

Footer section

Please note that footer items correspond to the header file_entries in same order.

uint32 section_tag //Payday 2 and Payday: The Heist = "F8 C5 FC EB"
uint32 section_size

uint32 section_item_count
uint32 unknown

uint32 unknown

uint32 unknown //tag?
FOREACH(section_item_count)
uint64 item_extension_hash
uint64 item_path_hash

uint32 unknown //end tag?
END FOREACH

uint32 zero //end

File structure of the h.bundle
(Data)

This file consists of a collection of files. Each file entry starts at a specified address in header with a
specified length, if length is not specified then it is calculated as a difference between current entry

address and next.

FOREACH(file_entries_count)
byte[] file_entry
END FOREACH

Unit File

This is an explanation of how units work in Payday 2. This may not be 100% perfect, but it should
give the basic idea of what's going on.

A “unit” in Payday 2 is an object like a mask or an enemy. It basically sets properties, applies
effects, and specifies textures for the units.

F

les

.unit - Points to a *.object file for further loading data about the unit. Specifies
dependencies like sounds, effects, or animations. Establishes the extensions, which
consist of properties for the unit like inventory, Al, damage, movement, sounds, or
interactions. Sometimes can specify a path for the .unit file that is supposed to be loaded
when the unit is spawned over network. And finally can specify the location of sound
sources for the unit.

.object - Points to a .material_config file, .sequence_manager file and the animations.
For some units, there are “bodies” that establish which parts of bodies are enabled, and
sets properties for them like friction, collision class, and a template. Then, there are
“constraints”, which mostly establish how far limbs can rotate. After that,
“decal_surfaces” are established, which basically assigns a specific decal material to parts
of bodies. And finally, “graphics” are specified, they set which parts of model are enabled,
and sometimes sets a LOD for them depending on distance from the unit.

.model - This is the model for the unit.

.material_config - Contains a list of materials with specified templates that are applied
to the textures. Points to *.texture files to use for reflections, diffused textures and normal
maps.

.cooked_physics - Not much is known about this file but it is related to physics of the
unit.

.sequence_manager - This file contains sequences which can be run on the unit.
.texture - This is a renamed .dds texture file.

Loading Order

Units in Payday are loaded in a specific order. If a file in this chain has an error, the unit will not
work correctly and potentially crash the game.

The loading order is as follows: .unit file is loaded first (this file has to point to the .object file to
load it next), next the .object file is loaded (this file often points to the .material_config file, which
contains textures for the model to use), next either .model or .material_config is loaded
(.material_config has specified texture files that it loads and applies a specific template with effects
to them. And .model contains the model and retrieves materials from the .material_config).

.unit Detalls

The .unit file is the first to get loaded when accessing the unit. This file is in .xml format, with a
fairly simple structure. Most of the things in these .unit files are pretty self explanatory. However,
the weapon units, mask units, and character units are all different. As they are obviously none of
them are the same at all! Here is a sample of a .unit file.

Sample Breakdown of a .unit file

As an example, | will be looking at the cloaker's (spook's) unit files. First, the .unit file of a cloaker
are located at (units\payday2\characters\ene_spook_1\ene _spook 1.unit).

<unit type="being" slot="12">
<anim_state_machine name="anims/units/enemies/cop/cop_machine" />

<object file="units/payday2/characters/ene_spook_1l/ene_spook 1" />

<dependencies>
<depends_on animation_state_machine="anims/units/enemies/cop/cop_machine"
animation_def="anims/units/enemies/cop/cop_def" />
<depends_on bnk="soundbanks/regular_vox" />
<depends_on effect="effects/particles/character/cloaker_goggle" />
<depends_on unit="units/payday2/characters/ene_acc_baton/ene_acc_baton" />

</dependencies>

<extensions>
<extension name="unit_data" class="ScriptUnitData" />
<extension name="base" class="CopBase" >
<var name="_tweak_table" value="spooc" />
<var name="_default_weapon_id" value="mp5_tactical" />
</extension>
<extension name="inventory" class="Coplnventory" />

<extension name="brain" class="CopBrain" />

<extension name="anim_data" class="PlayerAnimationData" />
<extension name="character_damage" class="CopDamage">
<var name="_head_body_name" value="head" />
<var name="_death_sequence" value="kill_spook_lights" />
</extension>
<extension name="movement" class="CopMovement" >
<var name="_footwear" value="boots" />
<var name="_anim_global" value="cop" />
</extension>
<extension name="interaction" class="IntimitatelnteractionExt" >
<var name="tweak_data" value="intimidate" />
</extension>
<extension name="network" class="NetworkBaseExtension" />
<extension name="damage" class="UnitDamage" >
<var name="_skip_save_anim_state_machine" value="true" />
</extension>
<extension name="contour" class="ContourExt" />
<extension name="sound" class="CopSound" />

</extensions>

<network sync="spawn" remote_unit="units/payday2/characters/ene_spook_1l/ene_spook 1 husk"/>

<sounds>
<default_soundsource source="Hips"/>
</sounds>

</unit>
Please notice the structure: anim_state_machine, then object, then dependencies, then extensions,
then network, then sounds. Sometimes, if this structure is not followed, the game will crash. (Note,

Payday: The Heist sometimes does not follow this structure, so PD1 .unit files would often result in
a crash).

Let's breakdown this file by sections.

<unit type="being" slot="12">

The first section states that this unit is a human being (I am assuming when you hit it, blood will
come out). And that it's in slot 12 (I believe slot number can be ignored).

<anim_state_machine name="anims/units/enemies/cop/cop_machine" />

The second section establishes the animations that this unit will use. In this case, the cloaker will
be using cop animations.

<object file="units/payday2/characters/ene_spook_1l/ene_spook 1" />

The third line establishes where the next file is, the .object file. This file will be loaded after the
.unit (Please note that the path does not contain an extension, the game already knows that you
pointed at a .object file.

<dependencies>
<depends_on animation_state_machine="anims/units/enemies/cop/cop_machine"
animation_def="anims/units/enemies/cop/cop_def" />
<depends_on bnk="soundbanks/regular_vox" />
<depends_on effect="effects/particles/character/cloaker_goggle" />
<depends_on unit="units/payday2/characters/ene_acc_baton/ene_acc_baton" />

</dependencies>

This block of code establishes the dependencies that this unit has. This unit is dependent on the
cop animations using the cop animation definitions. Next, this unit is dependent on the sound bank
“soundbanks/regular_vox” (this soundbank is related to speech). Next, this unit is dependent on an
effect, the “effects/particles/character/cloaker_goggle”, in the .object file this effect will be
assighed to a specific location. And finally, this unit is dependent on another unit
“units/payday2/characters/ene_acc_baton/ene_acc_baton” (this counts as an enemy accessory,
thus the name “ene_acc”). And once again, not a single path has an extension, the game knows.

<extensions>
<extension name="unit_data" class="ScriptUnitData" />
<extension name="base" class="CopBase" >
<var name="_tweak_table" value="spooc" />
<var name="_default_weapon_id" value="mp5_tactical" />
</extension>
<extension name="inventory" class="Coplnventory" />
<extension name="brain" class="CopBrain" />
<extension name="anim_data" class="PlayerAnimationData" />
<extension name="character_damage" class="CopDamage">
<var name="_head_body_name" value="head" />
<var name="_death_sequence" value="kill_spook_lights" />
</extension>
<extension name="movement" class="CopMovement" >
<var name="_footwear" value="boots" />
<var name="_anim_global" value="cop" />

</extension>

<extension name="interaction" class="IntimitatelnteractionExt" >
<var name="tweak_data" value="intimidate" />
</extension>
<extension name="network" class="NetworkBaseExtension" />
<extension name="damage" class="UnitDamage" >
<var name="_skip_save_anim_state_machine" value="true" />
</extension>
<extension name="contour" class="Contourkxt" />
<extension name="sound" class="CopSound" />

</extensions>

This chunk of code assigns basic unit things, like Al, inventory, sounds, etc. Most of them stay the
same, but variables change. The “unit_data” extension is present practically in every .unit file and
does not seem to change. The “base” extension is usually present on characters or usable objects.
In “base” the class changes depending on the unit, and the variables in the extension also change.
For this unit, the variables set the identity of this unit as “spooc” and assigns it “mp5_tactical” as a
default weapon. The “inventory” seems to be only present on units that can carry items (like ammo
or other weapons). The class usually stays as “Coplnventory”, but there could be multiple kinds of
“inventory”. The “brain” assigns Al to the unit, in this case “CopBrain” is assigned. The
“anim_data” is currently unknown to me, but | am guessing that these are the kinds of animations
a unit can perform, “PlayerAnimationData” is assighed. The “character_damage” assigns various
things regarding the damage the unit will take, “CopDamage” is assighed. Two variables are
assigned as well, “_head_body _name” signifies what part of body (according to model) is
considered to be the head, the “_deadh_sequence” signifies what sequence this unit will perform at
death. The “movement” assigns what kind of movement this unit will perform, “CopMovement” is
assignhed, as well as two other variables. The first variable “ footwear” states what kind of shoes
the unit will have, “boots” are assigned. Second variable “_anim_global” states what kind of
movement animations this unit will perform, “cop” animations are assigned. The “interaction” is
usually present with units that can be interacted with, | am lacking detail as to what kind of
interaction, “IntimatelnteractionExt” is assigned, with one variable. The variable “tweak _data” is
pretty much always present with “interaction”, “intimate” is assigned. The “network” extension is
usually present on units that can be spawned or changed during the game,
“NetworkBaseExtension” is assigned. The “damage” extension is usually present with units that
can deal damage, “UnitDamage” is assigned with one variable. The variable

“ skip_save_anim_state_machine” is related to animations and | am unsure about the exact usage
of this, variable is set to “true”. The “contour” extension is usually present with units that can have
an outline, class of “ContourExt” is assigned. The “sound” extension determines what kind of
sounds this unit can make, “CopSound” is assigned.

<network sync="spawn" remote_unit="units/payday2/characters/ene_spook_1l/ene_spook 1 husk"/>

This section is usually present with units that can be spawned or changed during the game. This is
responsible for syncing the spawn, by specifying the .unit file to be loaded on the clients. (Lobby
host does not use this, only the client).

<sounds>
<default_soundsource source="Hips"/>

</sounds>

This section specifies the source of sound for the unit. Apparently the cloaker (and all other
enemies) make sounds from their “Hips”.

After the .unit file is loaded, the .object gets loaded. Not all commands were listed in this example,
so other commands will be listed below in the “Other .unit commands” section with their
explanations.

Other .unit commands

Other .unit commands will be added here as research progresses.

.0bject Detalls

The .object file is second to get loaded when accessing the unit. This file is in .xml format, with a
fairly simple structure. Most of the things in these .object files are pretty self explanatory, and
about 80% unique to the unit, as it heavily replies on the model and the names of body parts in the
model. The .object file usually contains properties of model parts like materials,
sequence_manager, bodies, constraints, effects, graphics, and lights. Here is a continuation of the
unit breakdown from previous section.

Sample Breakdown of a .object file

Following from the previous section, the .object file path of a cloaker was assigned as
“units/payday2/characters/ene_spook 1/ene spook 1” (that's without the .object at the end). The
.object files tend to be repetitive, as they assign each “body” in a model, specific settings. And for
sake of space, the .object file will be cut down to include as little repetition as possible.

<dynamic_object>
<diesel materials="units/payday2/characters/ene_spook_1/ene_spook 1" orientation_object="root_point" />
<sequence_manager file="units/payday2/characters/ragdoll" /> <animation_def

name="anims/units/enemies/cop/cop_def" />

<bodies>

<body name="body" enabled="true" template="character" friction="0.6" collision_class="ragdoll">
<object name="Spinel"/>
<object name="c_capsule_body" collision_type="capsule"/>
</body>
<body name="mover_blocker" enabled="true" template="mover_blocker" keyframed="true"
collision_class="ragdoll">
<object name="root_point"/>
<object name="c_capsule_mover_blocker" collision_type="capsule"/>
</body>
PART OF THE FILE WAS SNIPPED HERE*

<!-- RAGDOLL -->
<body name="rag_Head" enabled="false" template="corpse" friction="0.01" sweep="true"
collision_class="ragdoll" keyframed="false" collision_script_quiet_time="0.5" collision_script_tag="small"
ray="block" lin_damping="0.6" ang_damping="20" collides_with="0" tag="flesh" restitution="0">
<object name="Neck" />
<object collision_type="sphere" mass="4" padding="-15" name="c_sphere_head_ragdoll"/>

</body>

<body name="rag_Hips" enabled="false" template="corpse" friction="0.6" sweep="true"
collision_class="ragdoll" keyframed="false" collision_script_quiet_time="0.5" collision_script_tag="large"
ray="block" lin_damping="0.4" ang_damping="20" collision_group="1" collides_with="0" tag="flesh"
restitution="0">
<object name="Hips" />
<object collision_type="capsule" mass="22" padding="-5" name="c_sphere_Hips" />
</body>
*KPART OF THE FILE WAS SNIPPED HERE***

</bodies>

<constraints>
<constraint type="ragdoll" name="RightArm" enabled="false">
<param body_a="rag_Spine2" body b="rag RightArm"/>
<param pivot="position:RightArm"/>

<param twist_axis="yaxis:RightArm" twist_min="-60" twist_max="70" twist_freedom="20"/><!-- X axis --

<param plane_axis="xaxis:RightArm"/><!--Y axis -->
<param cone_y="35" cone_z="40" cone_freedom="10"/>
<param damping="1" spring_constant="200" min_restitution="0"/>

</constraint>

<constraint type="limited_hinge" name="RightForeArm" enabled="false">
<param body_a="rag_RightArm" body _b="rag_RightForeArm"/>
<param pivot="position:RightForeArm"/>

<param min_angle="-60" max_angle="60" axis="yaxis:RightForeArm" twist freedom="5"/> <!-- X axis --

<param plane_axis="xaxis:RightForeArm"/> <!-- Y axis -->

<param damping="1" spring_constant="200" min_restitution="0"/>
</constraint>
*#kPART OF THE FILE WAS SNIPPED HERE***

</constraints>

<decal_surfaces default_material="flesh" />

<effects>
<effect_spawner name="es_light" enabled="false" object="e_light"
effect="effects/particles/character/cloaker_goggle" />

</effects>

<graphics>

<graphic_group name="character" enabled="true" culling_object="g_body">

<lod_object name="lod_body">
<object name="g_body" [Tlenabled="true" max_distance="3000" max_draw_lod="0" />
<object name="g_body lod1" [lenabled="true" lod="1" />

</lod_object>

<object name="s_body" enabled="true" shadow_caster="true"/>

<object name="g_il" [TJenabled="false" />

</graphic_group>

</graphics>

<lights>
<light name="point_light" enabled="false" multiplier="reddot" far_range="25" near_range="1" falloff="4.0"
type="omni|specular" />

</lights>

</dynamic_object>

Please notice the structure: diesel materials, then sequence_manager, then animation_def, then
bodies, then constraints, then decal_surfaces, then effects, then graphics, and then lights.
Sometimes, if this structure is not followed, the game will crash. (Note, Payday: The Heist
sometimes does not follow this structure, so PD1 .object files would often result in a crash).

Like before, Let's breakdown this file by sections.

<diesel materials="units/payday2/characters/ene_spook_1/ene_spook_ 1" orientation_object="root_point" />

This section specifies the location of the the .material_config file, along with the orientation
position. This is present in most units that have a model (some weapons don't seem to specify
this). The .material_config file is specified to be
“units/payday2/characters/ene_spook_1/ene_spook_ 1" (once again, no .material_config, game
knows) with the orientation at “root_point” of the model.

<sequence_manager file="units/payday2/characters/ragdoll" />" " <animation_def

name="anims/units/enemies/cop/cop_def" />

This section specifies what sequence_manager file to use. And what animations to use. (Sometimes

these are separated into two lines). The sequence_manager file is specified to be located at
“units/payday2/characters/ragdoll” (no .sequence_manager extension). And the
“anims/units/enemies/cop/cop_def” animation definition is set to be used.

<bodies>

[Tl<body name="body" enabled="true" template="character" friction="0.6" collision_class="ragdoll">

[ITl<object name="Spinel"/>

[ITl<object name="c_capsule_body" collision_type="capsule"/>

[TI</body>

[MI<body name="mover_blocker" enabled="true" template="mover_blocker" keyframed="true"
collision_class="ragdoll">

[ITl<object name="root_point"/>

[ITl<object name="c_capsule_mover_blocker" collision_type="capsule"/>

[MI</body>

+PART OF THE FILE WAS SNIPPED HERE*

<!-- RAGDOLL -->

[Tl<body name="rag_Head" enabled="false" template="corpse" friction="0.01" sweep="true"
collision_class="ragdoll" keyframed="false" collision_script_quiet_time="0.5" collision_script_tag="small"
ray="block" lin_damping="0.6" ang_damping="20" collides_with="0" tag="flesh" restitution="0">

[IT]<object name="Neck" />

[ITl<object collision_type="sphere" mass="4" padding="-15" name="c_sphere_head_ragdoll"/>

[T</body>

[TI<body name="rag_Hips" enabled="false" template="corpse" friction="0.6" sweep="true"
collision_class="ragdoll" keyframed="false" collision_script_quiet_time="0.5" collision_script_tag="large"
ray="block" lin_damping="0.4" ang_damping="20" collision_group="1" collides_with="0" tag="flesh"
restitution="0">

[ITl<object name="Hips" />

[ITl<object collision_type="capsule" mass="22" padding="-5" name="c_sphere_Hips" />

[MI</body>

4PART OF THE FILE WAS SNIPPED HERE*

[</bodies>

This section pretty much defines collisions and ragdolls per body parts in the model. For the first
“body” is enabled (as it's set to true), the templace for “character” is used with friction of “0.6",
and a collision class of “ragdoll”. This seems to include the object “Spinel” and “c_capsule_body”
of collision type “capsule”. Both of those objects are most likely defined in the .model file. THIS IS
NOT FINISHED!!!

<constraints>
<constraint type="ragdoll" name="RightArm" enabled="false">
<param body_a="rag_Spine2" body_b="rag_RightArm"/>
<param pivot="position:RightArm"/>

<param twist_axis="yaxis:RightArm" twist_min="-60" twist_max="70" twist_freedom="20"/><!-- X axis --

<param plane_axis="xaxis:RightArm"/><!-- Y axis -->
<param cone_y="35" cone_z="40" cone_freedom="10"/>
<param damping="1" spring_constant="200" min_restitution="0"/>

</constraint>

<constraint type="limited_hinge" name="RightForeArm" enabled="false">
<param body_a="rag_RightArm" body_b="rag_RightForeArm"/>
<param pivot="position:RightForeArm"/>
<param min_angle="-60" max_angle="60" axis="yaxis:RightForeArm" twist freedom="5"/> <!-- X axis -->
<param plane_axis="xaxis:RightForeArm"/> <!-- Y axis -->
<param damping="1" spring_constant="200" min_restitution="0"/>
</constraint>
¥PART OF THE FILE WAS SNIPPED HERE*

</constraints>

This section deals with constraints of rotations and movement. THIS SECTION NEEDS MORE
EXPLANATION, BUT IS SELF EXPLANATORY!!!

<decal_surfaces default_material="flesh" />

This little section states that the default material for the unit is “flesh”. There are a few other
default materials besides flesh, and sometimes they're even applied per body part in this section.

<effects>
[<effect spawner name="es_light" enabled="false" object="e_light"
effect="effects/particles/character/cloaker_goggle" />

</effects>

This section applies effects to the unit. | am not 100% certain on the application process. | believe
that the effect under the name “es_light” is being applied to the object “e_light” (probably stated in
.model) from effect file “effects/particles/character/cloaker_goggle” (once again, .effect extension
is not needed).

The name of the effect does not matter; it can be set to anything you want. It seems to be only for
referential purposes. The effect does not necessarily need to be applied to an "e_light" object, as
other objects in the file will work as well (such as "g_body" or "root_point").

<graphics>

<graphic_group name="character" enabled="true" culling_object="g_body">

<lod_object name="lod_body">
<object name="g_body" [Tlenabled="true" max_distance="3000" max_draw_lod="0" />
<object name="g_body lod1" [lenabled="true" lod="1" />

</lod_object>

<object name="s_body" enabled="true" shadow_caster="true"/>

<object name="g_il" [TJenabled="false" />

</graphic_group>

</graphics>

In this section, there are two things happening. First, the LOD is being set per distance (in
centimeters). So at distance < 3000 cm the default LOD model with be drawn to screen. If distance
> 3000 cm then the LOD1 will be drawn. Second, some elements of the model are
enabled/disabled in this section. As you can see, the “s_body” is enabled (with “true”) and is set to
cast a shadow with shadow_caster set to “true”. And then there is “g_il” which is disabled. Please
note that not all elements of the .model can be disabled here. Only the ones you know (i.e. the
ones already listed in this .object file) or the ones you know from the model (currently there is no
way of looking up element names from models.

<lights>

<light name="point_light" enabled="false" multiplier="reddot" far_range="25" near_range="1" falloff="4.0"
type="omni|specular" />

</lights>

This section is for creating a light on the unit. For this unit in particular, it creates a glow around
them that gets enabled via the sequence_manager. This “point_light” has a range of 1 - 25 with the
falloff of “4.0” (I think the falloff is for the type) and type of “omni|specular”. | am not certain about
what this type specifically does, but it certainly acts as an effect on this “point_light”.

After the .object file is loaded, either the .model or the .material_config file get loaded. Not all

commands were listed in this example, so other commands will be listed below in the “Other
.object commands” section with their explanations.

Other .object commands

Other .object commands will be added here as research progresses.

.model Detalls

Currently there are no details on the .models, as the filetype has not been completely reverse
engineered.

Research Notes:

.model contains hashed names of objects using Hash64, uint64. (Currently looking into editing elements)

Bones have been redone since Payday: ™ "'The " ""Heist , they now don't include 4th elements of fingers.
Each bone is specified as a 3D Object, which contains rotation matrix, position, and a parent ID.

Observations:

*It's near impossible to find model names, as they are hashed and unhashing them would be near impossible. They
are not part of idstring.

*'m assuming .material_config hashes the name of material, and applies it to the model. If it doesn't exist, it still
applies (to nothing).

*|t would be easier to create models from scratch, as you will know the names of all objects and materials, so you
would have full control over the model.

.material_config Details

https://wiki.modworkshop.net/Payday:_The_Heist

The .material_config file is loaded sometime after the .object file. This file is in .xml format, with a
fairly simple structure. Most of the things in these .material_config files are pretty self explanatory,
and is unique to the unit, as it heavily replies on the model and the names of body parts in the
model. The .material_config file contains texture paths (diffused and bump map textures),
sometimes reflection textures, sometimes material_textures, and sometimes some variables for
the render_template. Here is a continuation of the unit breakdown from previous section.

Sample Breakdown of a
.material _config file

In this example we will be using the cloaker. The .material_config file path of a cloaker was
assigned as “units/payday2/characters/ene_spook _1/ene_spook 1" (that's without the
.material_config at the end). The .material_config files tend to be repetitive, as they assign each
the requested material names in the model, specific textures and effects. And for sake of space,
the .material_config file will be cut down to include as little repetition as possible.

<materials version="3" group="ene_spook_1">
<material name="mtr_body"
render_template="generic:DIFFUSE_TEXTURE:NORMALMAP:RL_COPS:SKINNED_3WEIGHTS" version="2">
<bump_normal_texture [TTifile="units/payday2/characters/shared_textures/spook_heavy nm"/>
<diffuse_texture [TITfile="units/payday2/characters/shared_textures/spook_heavy df'/>
</material>
<material name="mtr_il"
render_template="generic:ALPHA_MASKED:DIFFUSE_TEXTURE:OPACITY_TEXTURE:RL_COPS:SELF_ILLUMINATION"
version="2">
<diffuse_texture [TITfile="units/payday2/characters/shared_textures/spook_il"/>
<self_illumination_texture [Tffile="units/payday2/characters/shared_textures/spook_il"/>
<opacity_texture [[TTffile="units/payday2/characters/shared_textures/spook_il"/>
<variable [TTTTTivalue="reddot" type="scalar" name="il_multiplier"/>
</material>
<material name="shadow_caster" render_template="shadow_caster_only:SKINNED_1WEIGHT" version="2"/>

</materials>

There is no specific structure to follow. This file seems to be a list of materials with some variables
attached. The only real problems that can occur are incorrect textures, broken model, no model at
all (but a floating blob of gray).

Let's breakdown this file by sections.

<materials version="3" group="ene_spook_1">

This establishes the group that these materials belong to. | am not sure as to what group names

can be given, but it's best to keep them similar to the original model names. The version does not
seem to matter.

<material name="mtr_body"
render_template="generic:DIFFUSE_TEXTURE:NORMALMAP:RL_COPS:SKINNED_3WEIGHTS" version="2">
<bump_normal_texture [ITffile="units/payday2/characters/shared_textures/spook _heavy nm"/>

<diffuse_texture [TTTffile="units/payday2/characters/shared_textures/spook_heavy df'/>

</material>

This section identifies a material “mtr_body” with a render_template of
“generic:DIFFUSE_TEXTURE:NORMALMAP:RL _COPS:SKINNED 3WEIGHTS” and version of “2” (once
again, does not seem to matter). The material name has to match the one listed in the .model file,
otherwise the model will be broken. The render_template is a predefined template, and CANNOT

SIMPLY BE APPENDED, there is a list of available render_templates with explanations HERE. This
material has two variables included (these are present with almost every material). The
“bump_normal_texture” specifies where the bump map of this material is, for this example it's
located at “units/payday2/characters/shared_textures/spook heavy nm” (once again, the .texture
extension is not needed). Followed by a “diffuse_texture”, which is the actual texture of the
material, located at “units/payday2/characters/shared_textures/spook_heavy df”. Both the

“bump_normal_texture” and the “diffuse_texture” are passed to the render_template to be
handled.

<material name="mtr_il"
render_template="generic:ALPHA_MASKED:DIFFUSE_TEXTURE:OPACITY_TEXTURE:RL_COPS:SELF_ILLUMINATION"
version="2">

<diffuse_texture [TITffile="units/payday2/characters/shared_textures/spook_il"/>

<self_illumination_texture [Tffile="units/payday2/characters/shared_textures/spook_il"/>

<opacity_texture [TITffile="units/payday2/characters/shared_textures/spook_il"/>

<variable [TTTITivalue="reddot" type="scalar" name="il_multiplier"/>

</material>

This section right here is almost identical to the previously viewed material. To differentiate this
new material, it has a different, uses a different render_template, and has a few new variables. The
diffuse texture serves the same purpose as before. The new, “self_illumination_texture” points to
the path of “units/payday2/characters/shared_textures/spook_il”. This “self_illumination_texture” is
related to the render_template. Same with "opacity_texture " and the “variable”. All of them are
passed to to the render_template to be handled.

<material name="shadow_caster" render_template="shadow_caster_only:SKINNED_1WEIGHT" version="2"/>

https://wiki.modworkshop.net/Payday_2/Render_Templates_List

This last section is responsible for casting shadows. With name “shadow_caster” and
render_template of “shadow_caster_only:SKINNED_ 1WEIGHT". A list of available render_templates

with explanations HERE.

After the .material_config file is loaded, nothing else loads. Not all commands were listed in this
example, so other commands will be listed below in the “Other .material_config commands”
section with their explanations.

Other .material _config commands

Other .material_config commands will be added here as research progresses.

https://wiki.modworkshop.net/Payday_2/Render_Templates_List

Skin map textures (df cc)

Skin map texture

The cc_df textures are used instead of diffuse on models when skin is applied and each channel
controls specific aspect of it:

Red

Red channel is used as material map for 6 defined types of it.

Materials shown in overkill base gradient template.

Example of PD2 Aimpoint material map layer.

Green

Green channel seems to be mix of various maps with diffuse as main goal of this channel is to give
skin a shape and details like a diffuse but with colors controlled by skin.

Example of PD2 EOTech sight.

Blue

Blue channel is used to create "wear and tear" damage to skin as quality of skin lowers and
gradient timeline progresses.

Example of wear and tear on PD2 EOTech sight.

Creating skin textures for
custom models

Red

Material map can be either created by manually painting parts on channel or using exported UV
layouts of selected meshes. Painted parts must only use solid color as any form of gradients or
blending will results in artifacts.

Use these RGB color values to assign specific material:

Metal - #000000

Plastic - #525252
Wood/Rubber - #5a5a5a
Sec. Metal - #848484
Cloth - #adadad

Details - #efefef

Green

Diffuse texture in grayscale can be reused for this channel. Image must be in edited be around
light gray colors (Too dark image will results in missing details on models).

Blue

For wear and tear layer any texture of scratches with transparency or on white background can be
used.

Example of random texture with scratches. For best transition between skin quality scratches
should have some black/white range can go fully from 0 to 255.

Black color = Part of texture that will get damaged/White = Solid. Optional: Very subtle outlines of
AO map for easier visualization what parts of texture get damaged.

Preview of example texture in-game.

Note about Payday 2 Model
Tool

For GLTF/GLB format: New objects and models can include more UV layers.

e UVO (Default "UVMap" in blender) will be used as the "pattern UV" if a second UVMap is
not present.

e UV1 (Second listed UVMap in blender) will be used as the "pattern UV" for patterns and
stickers when present.

For OBJ format: Not recommended to use but new objects or models are free of any problems with
skins but in case of replacing existing objects in PD2 models remember to use "Pattern UV" option
to prevent patterns being missing/broken in most cases.

Additional notes about UV
coordinates

Some CC textures have parts that do not utilise the skin materials and will show their original
textures (Example, Commando 101 rocket launcher), this effect can be achieved by moving the
pattern UVs outside of the 0-1 region.

Animated Models

(WIP PAGE ON ANIMATED MODELS USED IN PAYDAY 2)

Page Notes:

e Animations missing X Y or Z rotations dont seem to work properly. (tested on 32-Bit Floats
with Discard)
o Animations missing X Y or Z loations work fine.
o Animations using scale likely dont work.

Importing Animations

wip

Exporting Animations

wip

Building an animated model

wip
Object File Portion:

[<!--Storing and Grouping Animations-->
[J<animations>

[MI<animation_group name="animation_group_name">
[IT]<object name="anim_part_a" />

[(ITl<object name="anim_part_b" />

[TI</animation_group>

[J</animations>

[<!--Collision/Hitboxes-->

[<bodies>

[Tl<body name="body_anim_part_a" enabled="true" template="animated">
[ITl<object name="anim_part_a" />

[ITl<object name="c_c" collision_type="box" padding="-2.5"/>

[[</body>

[J</bodies>

Sequence Manager

animation_group is the type of sequence you want to play animations in the model.

enabled: Is it playing or paused (true/false)

name: The animation group name you want to use ("'string"")

from: The start of where you are playing

to: where you want to end (not using this will make it continue until the end of the
animation)

Example:

[[I<sequence editable_state="true" name="'play_animation'" triggable="true">
[ITl<animation_group enabled="true" name="'animation_group_name'" from="0/30" to="20/30"/>

[Il</sequence>

Material Config XML

Example XML:

<materials version="3">

<material name="mat_name" render_template="generic:DIFFUSE_TEXTURE:NORMALMAP" version="2">
<diffuse_texture[Tffile="texture/file/path/my_texture_df"/>
<bump_normal_texture[ffile="texture/file/path/my_texture_nm"/>

</material>

</materials>

TEMPLATES ARE NOT MODULAR!
A full list of template variables can be found in shaders/base.render_template_database

<materials/> contains all of the material xml for the file.

o Typically uses version="3"

<material/> contains the information of a material.

o Typically uses version="2"

<diffuse_texture/> a variable that often uses a texture with the identifier _df at the end.

<bump_normal_texture/> a variable that often uses a texture with the identifier _nm at the

end.

<material_texture/> a variable that often uses a texture with the identifier _gsma at the

end. (Gloss, Specular, Metalness, Alpha)

<reflection_texture/> is a variable that loads a cubemap to a material that accepts

cubemaps.

o <reflection_texture type="cubemap" global_texture="current_global_texture/>" will use the
Environment set cubemap.

o <reflection_texture type="cubemap" file="texture/file/path/my_cubemap"/> will use a locked
cubemap and wont change from environments.

Special Use Cases

<material/> control options:

o name="mat_name" give your material a name to go with your models material name.

o render_template="template_name" a full list of templates can be found in
shaders/base.render_template_database

o unique="true" is usually used for materials that will change per-unit. Unit contours for
example.

o src="name" Will clone the values from an existing <material> to your current
material.
o cloned materials can be modified further by including variables or textures to
override the source copy.
o decal_material="id" graphic mesh faces with the material will use the decal_material
variable for hit effects.
o List of decal IDs can be found in lib\tweak_data\tweakdata.lua self.materials = {list}
o diffuse_color="255 255 255 255" potentially unused. (Red, Green, Blue, Alpha)
o version="2" most if not all templates use version 2.
e <variable/> control options:
o Animations can control some variables using the listener type.
o Standard variable: <variable name="il_tint" type="vector3" value="11 1"/>

o Listener variable: <variable name="il_tint" type="listener" value="light::color"
object="lo_lightobject"/>

Object Xml|

Example XML:

<dynamic_object>

[<diesel materials="units/path/material_config" orientation_object="rp_rootpoint_object" />
[J<sequence_manager file="units/path/sequence_manager" />

[<bodies>

[Tl<body name="body_static" enabled="true" template="static">
[(ITl<object name="c_collision" collision_type="box" padding="-2.5" />
[[</body>

[J</bodies>

0

[<decal_surfaces default_material="stone">

[Tl<decal_mesh name="dm_decalmesh" enabled="true" material="steel" />
[l</decal_surfaces>

i

O<graphics>

[IJ<object name="g_graphics" enabled="true" shadow_caster="true" />
O</graphics>

</dynamic_object>

<diesel/> is a required table that holds a path to the materials and root object.

o materials="path" leads to the material config the unit will use.

o orientation_object="rp_rootpoint" the object that acts as the origin of the unit, must be
an Empty object.

e <sequence_manager file="path"/> is its own table defining the sequence manager the unit

will use.

o Warning! <extension name="damage" class="UnitDamage" /> is required in the units
extensions!

<bodies/> is the table that holds collision information.
<body/> is the table that holds the objects that will be used as collision.
o name is the name of the body you are making.
o enabled is a toggle for if collision should be enabled.
o template is the physics template of the body.
o static is solid collision.

o

editor is editor only collision.

a full list of templates can be found in settings/physics_settings.physics_settings .
templates can be edited in object by adding properties seem in the
physics_settings file.

o

o

e <object/> is the table that holds the referenced object. (The same object can be used

more than once)
o name is the name of the object being used.
o Using empties will bind the body to the empty for constraints.
o collision_type is the shape/type of collision.
o box is a box.
o sphere is a sphere.
o capsule is a pill shape.
o convex is a convex shape based on your used object mesh.
o mesh_mopp is a paper thin collision that is 1:1 the shape of your objects mesh.
o two_sided is a toggle for if your collision should be double sided. (Very buggy!)
o padding is the additional thickness in cm of your object.
o Default 0 leaves models 2.5cm thicker, use -2.5 to correct it.
o Does not apply to mesh_mopp collision.
<decal_surfaces/> is the table that holds a list of meshes to act as decal surfaces. (Blankets
that allow decals to spawn)
o default_material is used if no decal material information is avaliable when hit.
<decal_mesh/> is a table that holds a specific object to act as a decal surface.
o name is the name of the object being used as the decal mesh.
o enabled is a toggle for if decal_mesh should be enabled.
o material to be used when shot/hit.
<graphics/> is the table that holds all of the graphics objects.
o <object/> is a table that is used to control the selected graphic.
o name is the name of the object being used as the graphic.
o enabled is a toggle for if the graphics should be visible.
o shadow_caster is a toggle for if the graphics object should cast a shadow.
(typically used by shadow_caster material objects. s_shadowcaster)
<constraints/> is a table that holds all of the constraint information.
<constraint/> is a table that constrains objects together.
enabled is a toggle for if the constraint should be active.
o type="" sets the type of constrant.

o

o static
o ragdoll
o <param body a="body a" body b="body b"/> Attaches A to B.
o Attaching to world requires @world to be used as body a .
o <param pivot="position:a_object"/> Sets the position to pivot from.
o <param twist_axis="yaxis:a_object" twist_ min="-10" twist_max="10" twist_freedom="1"/> Sets
the twist axis and control.

o

<param plane_axis="xaxis:a_object"/>
o <param cone_y="60" cone_z="60" cone_freedom="12"/> Limit the angle the constrant can
rotate.

o

<param damping="8" spring_constant="600" min_restitution="0"/> Spring settings.

Segquence Manager XML

Unit extension

<extension name="damage" class="UnitDamage" />

Include in object file

<sequence_manager file="path to your sequence manager" />

Example XML:

<table>
<unit>

<sequence editable_state="true/false" name=""" triggable="true/false">

</sequence>
</unit>

</table>

Important: Strings need to have ' at the beginning and end, otherwise they do not
work.

Sequences

e <sequence/>
o name The name of your sequence. This will show up in the mesh variation dropdown
and UnitSequence/UnitSequenceTrigger elements.
o editable_state Makes the sequence show up in the mesh variation dropdown and
UnitSequence element. *
o triggable Makes the sequence show up in the UnitSequenceTrigger element *

o Both editable_state and triggable are optional. Sequences will run and trigger
without them, you just have to type in the sequence name manually into the
elements.

o *That's probably how it's supposed to work, however testing showed
that having either of them set to true will make it show in both

UnitSequence and UnitSequenceTrigger, as well as the mesh variation
dropdown.

once true /false | Sequence can only run once.

<object/> Used to toggle individual graphic objects.

o name Name of the object. Usually start with "g_".

o enabled true / false

<graphic_group/> Used to toggle graphic groups.

o name Name of the graphic group.

o visibility true / false

<body/> Used to toggle bodies/collisions.

o name Name of your body.

o enabled true / false

<decal_mesh/> Used to toggle decal meshes.

o name Name of your decal mesh. Usually start with "dm_".

o enabled true / false

<light/> Used to toggle lights.

o name Name of your light object.

o enabled true / false

<material_config/> Used to change the material config of your unit.

o name path to the new .material_config you want to apply.

<sound/> Used to play sounds from your unit.

o action play / stop

o event ID of the sound you want to play.

o object Source object the sound is played from.

o source Alternative to object, use a soundsource which has been defined in the
.unit file.

<effect/> Used to play effects from your unit.

o name Path to the effect you want to play. Example:
name="'effects/particles/explosions/explosion_grenade'

o parent object you want to play the effect from. Example: parent="object('smoke'
o

o position (Not sure what it does exactly, every effect | found had position="v()" in
it too)

<animation_group/> Plays an animation.

o enabled true / false

o name Name of your animation group.

o from The frame that this animation should start on. Example: from="0/30 will
make the animation play at 30fps.

o to End frame of your animation. Example: to="64/30

speed How fast your animation is playing. 1 is normal speed, can be a negative

value to play backwards.

<run_sequence/> Used to run another sequence.

o name The name of the sequence you want to run.

<spawn_unit/> Spawns a new unit.

o

o name Path to the unit you want to spawn.

o position Object position, usually an empty, that the unit will be spawned on.
Example: position="object_pos('spawn_doors')"
o rotation Same as position, but for rotation. Example:
rotation="object_rot('spawn_doors')"
o <interaction/> Toggle interactions on your unit.
o enabled true / false

o start_ time can be used on pretty much everything to add delays.
o startup true / false

Hitboxes

You can take any body from your .object and use it as a hitbox to trigger sequences.

<table>
<unit>
<body name=""">
<endurance>
<run_sequence name="""/>
</endurance>
</body>
</unit>

</table>

e <body/> This defines a body from your .object as a hitbox.

o name The name of the body.

o <endurance/> Controls how much damage the hitbox can take before it triggers the
sequences inside.
o bullet How many times you need to shoot it.
o explosions How many explosions you need.
o melee How many melee hits you need.
o lock Doors, deposit boxes and basically anything you can use a saw on use

this. (For Example: lock="15" on deposit boxes.)

Filters and Variables

You can define variables and filter sequences based on the value of a variable.

<table>

<unit>

<variables>
[<your_variable_name value="#"/>

</variables>

<filter name=""'your filter name'">
<check value="vars.your_variable_name == #"/>
</filter>
</unit>

</table>

Add filter="your filter name" to a sequence to make it only run if the variable and the filter have the
same value.

Use <set variables your variable_name="#"/> to change variable values.

Example:

<table>
<unit>
<variables>
O<var_loot_type value="0"/>

</variables>

<filter name=""loot_money'"'>
<check value="vars.var_loot_type == 1"/>

</filter>

<filter name=""loot_gold"'>
<check value="vars.var_loot_type == 2"/>

</filter>

<sequence editable_state="true" name="'set loot_money'" triggable="true">
<set_variables var_loot_type="1"/>

</sequence>

<sequence editable_state="true" name="'set_loot_gold' triggable="true">
<set variables var_loot_type="2"/>

</sequence>

<sequence editable_state="true" name="'spawn_loot'" triggable="true">
<spawn_unit filter=""loot_money""

name=""units/pd2_dlcl/vehicles/str_vehicle truck gensec_transport/spawn_deposit/spawn_money'".../>

<spawn_unit filter=""loot_gold""
name="'units/pd2_dlc1/vehicles/str_vehicle_truck_gensec_transport/spawn_deposit/spawn_gold'".../>

</sequence>

</unit>

</table>

To be continued...

(old notes from rex)

Vector3 form in sequence manager: v(0, 0, 0)
MaterialElement

e <material/> material sequences affect materials of the functioning unit. Unique="true" is
required to only affect this unit.
o name is the name of the material you are modifying.
o time set the time of animated materials, Joys mask uses this feature.
o state sets a state argument, Joys mask uses this feature to pause the UV scrolling.
o render_template sets the render template.
o glossiness sets the glossiness value.
If you use a custom key="value" you can affect material config elements on your

o

own.

o Example: <material name=""mat_mat"" il_multiplier="10"/>

o This will modify the il_multiplier of an illuminated material.
o Vector3 values need to be written like so key="v(1, 2, 3)"

pick random sequence thingy <run_sequence name="'sequence_'..pick('1','2",'3")"

