
Introduction
Beginner BLT modding
Resources
Quick introduction to Hooks

BLT Modding

It it recommended to have at least beginner level knowledge in programming (doesn't have to be
Lua necessarily). These terms shouldn't be new to you: Variables, Conditions, Functions

An introduction into BLT-modding
Understanding core concepts
A working example to play around with
Links to resources

Learning how to code Lua
Understanding the Payday 2 source code
Using libraries like BeardLib

Make sure you have a code editor. I can recommend Visual Studio Code
Download the Payday 2 Source Code (only used for searching - you don't need to build
anything)
Enable the developer console by placing an empty developer.txt file inside your mods
folder. (This can help you find errors in your mod)
Make a new folder in mods and place an empty mod.txt and mod.lua inside it.

Introduction
This guide will be a simple tutorial on how to make your first BLT mod
with a suitable example to follow along.

The example mod will hide all (multiplayer) jobs from Crime.Net which
are not stealthable.

Scope

Expect this:

DON'T expect this:

Setup

https://code.visualstudio.com/
https://github.com/steam-test1/Payday-2-LuaJit-Source-With-Line-Numbers-Continued

Every mod needs this file. This file is responsible for loading your mod with BLT. Below you will find
the mod.txt used for this example. Copy the contents inside your own mod.txt . Most of the fields
should be self explanatory expect for the hooks .

hook_id is the path to the file (from the original codebase) in which the function is defined
which we want to manipulate.
script_path is the path to the file in your mods folder where your code is in.

There's no magic trick to finding the right place in the source code. It takes practice and
understanding of the codebase. We will not be covering that here but you are more than welcome
to ask the community for help in the #payday-help -channel of our Discord on this topic.

Beginner BLT modding
mod.txt

{
	"name": "Hide loud jobs",
	"description": "Hides jobs from crime.net which are not stealthable",
	"author": "Your name",
	"version": "1.0",
	"blt_version": 2,
	"hooks": [
		{
			"hook_id": "lib/managers/crimenetmanager",
			"script_path": "mod.lua"
		}
]
}

Hooks

Finding the code

https://discord.gg/Eear4JW

You can still follow along by opening the file lib/managers/crimenetmanager (this is also the hook_id)
inside the source code you downloaded earlier. Find the function CrimeNetGui:add_server_job (or view
it here).

Copy the entire function in your mod.lua . Now we will add an if -statement around the code inside
the function. This statement will check if it is indeed a stealthable mission. Only if that's the case
will the game actually add it to the map. Luckily there is already such a function built into the game
(as it's used to display the little ghost icon next to the job). You can find that part in the same file
(or view it here). Let's have a look at it:

From simply reading the code: If the job_id exists and the job with the given job_id is stealthable,
we create a new icon with the texture of the blue ghost and set its position. Now let's try to apply
that to our code. Our function is also given the parameter data . This is in fact the same object for
this case. Therefore we can safely wrap our code in the exact same if -statement like this:

Here's how your finished mod.lua should look like:

Editing the code

if data.job_id and managers.job:is_job_ghostable(data.job_id) then
	ghost_icon = icon_panel:bitmap({
		texture = "guis/textures/pd2/cn_minighost",
		name = "ghost_icon",
		blend_mode = "add",
		color = tweak_data.screen_colors.ghost_color
	})

	ghost_icon:set_top(side_icons_top)
	ghost_icon:set_right(next_icon_right)

	next_icon_right = next_icon_right - 12
end

mod.lua

function CrimeNetGui:add_server_job(data)
	if data.job_id and managers.job:is_job_ghostable(data.job_id) then
		local gui_data = self:_create_job_gui(data, "server")

https://github.com/steam-test1/Payday-2-LuaJit-Source-With-Line-Numbers-Continued/blob/fac3b2a1ebe7e5b49283da7cc9778e9717c57a17/lib/managers/crimenetmanager.lua#L2848
https://github.com/steam-test1/Payday-2-LuaJit-Source-With-Line-Numbers-Continued/blob/fac3b2a1ebe7e5b49283da7cc9778e9717c57a17/lib/managers/crimenetmanager.lua#L3504

That's it - Try it out!

I will explain to you my thought process of how I was able to find the correct function in case it may
help you:

For this example I was specifically looking for crimenet which brought me directly to the
CrimeNetManager . I knew that stealth is mostly referred to as ghost in the code - so I quickly picked
up on the idea of the ghost_icon which was used in the function _create_job_gui but that one is
difficult to grasp and gets called through the more accessible function add_server_job . Now I only
had to go back to the ghost_icon to figure out how the game determined if it should be displayed or
not.

Let's review some other methods we could have used to get this mod working.

PRO: You are in full control by modifying the original source code.
CON: Only 1 mod installed can hard-overwrite the function (not necessarily yours). All
other mods manipulating the same function will not work.

		gui_data.server = true
		gui_data.host_name = data.host_name
		self._jobs[data.id] = gui_data
	end
end

► End of basic tutorial ◄

Continuation: Finding the code

Different methods:

[Hard Overwrite] (as shown above)

function CrimeNetGui:add_server_job(data)
	if data.job_id and managers.job:is_job_ghostable(data.job_id) then
		local gui_data = self:_create_job_gui(data, "server")

This method is the most straightforward: It is the exact copy from the source code but with our
adjustments.

PRO: good for functions which return values.
CON: Still issues which compatibility as functions are chained/nested inside each other
and depending on loading order other mods could alter that behavior.

This method works by keeping a copy to the original function. This function is then overwritten with
our implementation where we call the reference to the original function.

PRO: The original function stays completely untouched.
CON: Does not work for functions which return values. We will cover techniques to
circumvent these issues in the "Advanced BLT modding".

		gui_data.server = true
		gui_data.host_name = data.host_name
		self._jobs[data.id] = gui_data
	end
end

Explanation:

[Soft Overwrite]

local old_add_server_job = CrimeNetGui.add_server_job

function CrimeNetGui:add_server_job(data)
	if data.job_id and managers.job:is_job_ghostable(data.job_id) then
		old_add_server_job(self, data)
	end
end

Explanation:

[Hook]

Hooks:PostHook(CrimeNetGui, 'add_server_job', 'hideloudjobs_crimenetgui',
function(self, data)
	if data.job_id and not managers.job:is_job_ghostable(data.job_id) then
		self:remove_job(data.id, true)
	end

Hooks don't touch the original function. They get executed just before (Pre) or after (Post) the
function.

Generally speaking: Hooks > Soft Overwrite > Hard Overwrite

Use Hooks wherever you can. Use Soft Overwrites when dealing with function where you need to
change the returning value and only use the Hard Overwrite method if you really have to.

end)

Explanation:

So which one should you use?

Decompiled game code
Source code of the game

Original BLT (outdated on some occasions)
Documentation which holds information about many features of (Super-)BLT like Menus,
Localization, Networking ...

Community BLT (work in progress)
Documentation which holds information about payday 2 mod creation, including
examples

BeardLib
Library for adding custom content, making menus ...

Auto Menu Builder
Library for generating menus

GitHub Auto-Update
Tool for making automatic updates via GitHub

Resources & Libraries
Link to the category from the MWS site

Resources

https://github.com/steam-test1/Payday-2-LuaJIT-Complete
https://payday-2-blt-docs.readthedocs.io/en/latest/
https://theokrueger-mods.gitlab.io/pd2-docs
https://modworkshop.net/mod/14924
https://modworkshop.net/mod/29982
https://github.com/HugoZink/PD2AutoUpdateExample
https://modworkshop.net/category/204

This guide is intended for people new to PAYDAY 2 Lua modding and explains different methods of
hooking functions and when to use them. I'll go over the most commonly used methods of function
hooking and explain how they work and why we need them.

You may ask yourself: Why all this complicated stuff? Can't I just copy and paste the original
function and make my edits to it? While yes, you could do a complete function override, you really
shouldn't unless it is absolutely unavoidable. In the worst case this will crash the game when an
update changes some things in that function and you will have to copy and change the new
function again to fix it. You will also run into the risk of breaking mods that rely on the same
function, as your mod would completely undo changes of other mods if it loaded afterwards.
The major takeaway is therefore: Doing proper function hooks increases compatibility with other
mods and game updates and is less likely to break over time. With that out of the way, let's see
what kind of hooking techniques exist.

Depending on what your mod is trying to achieve, you will have different needs when hooking
functions. The most common scenario is probably adding additional data or code on top of an
existing function after it executes. For this we generally use SuperBLT's PostHook, which registers a
custom function that is executed whenever the game executes the target function. Using a
PostHook is simple and can be used if you don't need to change the functionality of the original
function and just want to add some additional code.

Let's look at an example: We want to change the HP of the regular street cops. We can do this after
the cop's stats have been initialized, which happens in the function CharacterTweakData:_init_cop .
Looking at this function in the game code we can see that the cop's health is set here. Since we
just want to change the HP and still want all the other things to be initialized like usual we can add
code in the form of a PostHook.
We would do that like this:

Quick introduction to Hooks

Why bother using hooks?

Types of hooks
PostHook

When the game runs the original CharacterTweakData:_init_cop function, all the cop data will be
initialized as usual, but immediately afterwards, BLT will execute our hook function, changing the
cop's health to the value we supplied.

The function you specify for the PostHook will be supplied with the same arguments that the
original function will be called, so if you need them, you can specify them.
Note that CharacterTweakData:_init_cop(presets) is functionally identical to
CharacterTweakData._init_cop(self, presets) (specifically note . instead of : between CharacterTweakData
and _init_cop). This is important for your hook function if you plan to make use of the function
arguments and the reason why you usually see self as the first argument in a hook function even if
the original function doesn't have it.
If you are unsure about wether to include self in the list of arguments for your hook, just
remember that if the function is defined with a : in the game code, the first argument to it in a
hook should be self .

If you need access to what the original function of your hook returned you can use Hooks:GetReturn()
which will return any values that have been returned by hook functions and the original function
call that ran before your hook function. Let's say you made a new custom enemy and for making it
work properly you need to add it to the character map (a list of all enemies the game goes over
and generates contour mappings for). The character map is returned by the function
CharacterTweakData:character_map and the function itself creates and returns a local table with all
characters in it.

You can see that it easy to access the return value and change it (in this case the return value is a
table and we insert an entry into it. Another thing that you should notice is that you can return
values from a hook, this will override the return value of the original function (and any function
hooks on the same function that came before yours).

Very similar to a PostHook, the only difference is that it will be executed before the original
function is called. Less commonly used but useful if you need to change some values or add
additional code right before a function call. Note that setting fields that are created or set in the

Hooks:PostHook(CharacterTweakData, "_init_cop", "our_unique_hook_id", function (self)
	self.cop.HEALTH_INIT = 10
end)

Hooks:PostHook(CharacterTweakData, "character_map", "our_other_unique_hook_id", function (self)
	local char_map = Hooks:GetReturn()
	table.insert(char_map.basic.list, "custom_enemy_name")
	return char_map
end)

PreHook

function in the original code will have no effect since your code runs before the original function
and the original call will just override any values that it sets.

Another niche use case for a PreHook is changing function arguments that are of table type, as
tables are passed by reference and you can therefore change the content of the table which will
then be passed to the original function. As other data types are passed by value this only works for
tables.

The above mentioned hooking methods should cover a lot of usecases already, but there are some
cases where they are not usable. Let's say you want to change the arguments the original function
is called with or stop the function from being called based on some condition. This simply can not
be done with a PostHook or PreHook since all function arguments except tables are passed by
value and PostHook or PreHook will always run the original function.
In this case, you need to do a function wrap, often referred to as old_init. This involves saving the
original function into a variable and then overriding the function with a new one. In the new
function you then call the original function manually and do whatever else you need to do.

Some notes on this code:

Using ... in the function arguments represents any number of additional unspecified
arguments. We can use this to make sure we pass every argument that our function is
called with to the original function call without actually caring what they are. If you need
some of the actual arguments, you can simply list all arguments up to the ones you need
and then follow them by It is suggested to always use ... at the end of the argument
list, even if you already listed all of the original arguments in case any other mod or game
update adds additional arguments to that function call.
We have to make sure to return whatever the original function is expected to return, as
returning a wrong type or nothing at all can lead to crashes that are hard to pin down.

Function wrapping

local build_suppression_original = CopDamage.build_suppression
function CopDamage:build_suppression(amount, ...)
	if amount == "max" then
		amount = 2
	end

	return build_suppression_original(self, amount, ...)
end

So you chose to override after all

If none of the methods above can be applied to what you want to do, you will have to override the
entire function. However, SuperBLT provides a way to do this in a way that at least keeps any
hooks made by other mods intact.
An example could be the following:

Note that if another mod used SuperBLTs PostHook or PreHook on the same function, they will still
be called and you can maintain some compatibility with other mods. Redefining the function
without making use of Hooks:OverrideFunction will remove all hooks that were made by mods that
ran before yours which could lead to unexpected behavior.

Hooks:OverrideFunction(GroupAIStateBesiege, "assign_enemy_to_group_ai", function (self)
	-- Your code here
end)

