
Luxor 2
Documentation for Luxor 2

State File Modification
UI File Modification
GVF Types
General GVF Syntax

State File Modification
State files control certain functions of UI screens in games using the Luxor 2 engine. They have an
extension of sm and can be found in data/state .

For Luxor 2 (not HD), you may want to use a pre-fixed plaintext version of the state folder that
should work with all versions HERE.

General Ideas
Here's some basic ideas you could do with state files:

Simple screen additions, such as a credits screen without the need for replacing
something else for it, such as the Enable Cheats dialog
"Are you sure you wish to quit?"
Being able to assign MORE Map IDs in the Achievements screen, which might give way
for mods with 26+ maps that properly function in Survival/Challenge/Gauntlet modes

Remark: I noticed that it seems like Luxor AR HD (or Luxor 1 HD?)
used to be a 2-in-one pack of sorts, you can check achievements.sm and
notice how there's "Luxor Completion" stuff commented out and the
map counts starting from 26, this is obvious when playing a map in
Survival/Practice mode.
Remark 2: It might be already possible to have 26+ maps in the
Survival/Challenge/Gauntlet maps, due to the fact that these levels
start from the index of 26.

“

Splitting achievements screen into two (achievements and personal stats), but I dunno
why would you do that.
Set music playlists for each screen (without the need for hacky workarounds, such as
playing an eiSound in the "Danger" track and setting "Normal" track volume to 0)

But before you get too excited, know that you can't do these:

An actual cutscene system (damn, I wish)
Conditional statements
A fix for 15+ stages (see: DRTPIAB's Epic Wins/Fails counter attempt, ask anyone lol)
Implement things from other Luxor 2-based engine games (LXE, NCQ, MM, etc)

https://cdn.discordapp.com/attachments/455322835183861780/1105010009584177174/state.zip

Per-level tracks

Remark: It seems like Luxor Evolved-specific features are in Luxor
Amun Rising HD, and possibly other HD remasters. While looking at it's
memory allocation in HxD, I noticed Luxor Evolved specific things like
uiSpectrumFrame and Song are in the game. Sadly, it is not possible to
assign level tracks this way. It just seems like those were just sitting in
the code, and the devs only worked on those when Evolved was next to
be developed.
It only makes sense considering Luxor HD remasters and Evolved were
released during 2012, and the other HD releases never needed such
functionality.

“

Basic State File Modification
Creating Simple Screens
Let's say we'd like to create a simple confirmation screen for when the player wants to exit. We
don't need to worry much about it - the UI system takes care of our UI elements, and the state
system takes care of the "programming".

First we need to look at vars_pc.gvf (Don't mind the iOS and x360 files, unless you're over your
head and want to create a Luxor AR HD mod for Android devices, then yes, go ahead).

As you can see, the vars pretty much define UI files for state machine files. We want to define a
new UI here, as shown:

 7 global TOPLEVEL_UI = ~data/scripts/interface/toplevel.ui
 8 global TRANSITION_UI = ~data/scripts/interface/transition.ui
 9 global GAME_UI = ~data/scripts/interface/game.ui
 10 global DIALOG_OPTIONS_UI = ~data/scripts/interface/dialog_options.ui
 11 global DIALOG_MODE_SELECT_UI = ~data/scripts/interface/dialog_mode_select.

 7 global TOPLEVEL_UI = ~data/scripts/interface/toplevel.ui
 8 global TRANSITION_UI = ~data/scripts/interface/transition.ui
 9 global GAME_UI = ~data/scripts/interface/game.ui
+ 10 global DIALOG_CONFIRM_EXIT = ~data/scripts/interface/dialog_confirm_exit.ui
 11 global DIALOG_OPTIONS_UI = ~data/scripts/interface/dialog_options.ui

We're going to the ui files now. I'm not going to talk much about it, but we're mostly interested in
the Command property.

The command name does not matter as long as it's readable and it's the exact same name you'll
be using in the state file.

The state machine file we're interested in is mainmenu.sm .

 .. uiButton Button_ActuallyQuit
 .. {
 .. Position = [108.000000, 390.000000, 0.000000]
 .. AnchorHorz = CENTER
+ .. Command = "QuitForReal"
 ..
 .. uiTextWidget Text
 .. {
 .. Text = T("Yes")
 .. }
 ..
 .. uiSprite Icon
 .. {
 .. Style = "Icon"
 .. Position = [48.000000, 48.000000, 0.000000]
 .. Color = [1.000000, 1.000000, 1.000000, 0.908038]
 .. AnchorHorz = CENTER
 .. AnchorVert = CENTER
 .. Sprite = ~data/scripts/interface/styles/dialog/button_ipad/sprites/icons/quit_game.png
 .. BlendMode = ADD
 .. }
 .. }

 37 Command "Profiles" StateMachine::csPushState "Profile_Manage"
 38 Command "Play" StateMachine::csPushState "ModeSelect"
 39 Command "Options" StateMachine::csPushState "Options"
 40 Command "HighScores" StateMachine::setState "HighScores"
 41 Command "Instructions" StateMachine::setState "Instructions"
 42 Command "Achievements" StateMachine::setState "Achievements"
 43 Command "MoreGames" enClientLocal::invoke_3rdPartyMoreGamesURL
 44 Command "QuitMenu" StateMachine::setState "MainMenuQuit"

The string after the keyword "Command" is what triggers the function/callback/whatever in the
right. We want to change line 44 to something like:

We want to "push" the state and not "set" it, because our exit confirmation dialog is a pop-up, not
full-screen. All we need to do now is to create the new state!

You might be able to understand quickly how this works now. The "Cancel" command just "pops"
the state and goes back to the previous state (which is the main menu). The "QuitForReal"
command sets the state to "MainMenuQuit", which is already defined, which well... exits the game!

Think of the "Command" property as an alias to a function, with the state file providing the "link" to
the function.

Assigning Music to Screens
Let's say we want to change the adventure Stage Map to play something else instead of the same
old boring main menu theme. First we need to modify data\game\music.gvf .

We just need to add a new objEffectMap, like so:

 37 Command "Profiles" StateMachine::csPushState "Profile_Manage"
 38 Command "Play" StateMachine::csPushState "ModeSelect"
 39 Command "Options" StateMachine::csPushState "Options"
 40 Command "HighScores" StateMachine::setState "HighScores"
 41 Command "Instructions" StateMachine::setState "Instructions"
 42 Command "Achievements" StateMachine::setState "Achievements"
 43 Command "MoreGames" enClientLocal::invoke_3rdPartyMoreGamesURL
! 44 Command "QuitMenu" StateMachine::csPushState "ConfirmExit"

+ .. StateDialog ConfirmExit : BaseState
+ .. {
+ .. Dialog = DIALOG_CONFIRM_EXIT
+ ..
+ .. Command "Cancel" StateMachine::popState
+ .. Command "QuitForReal" StateMachine::setState "MainMenuQuit"
+ .. }

 1 objEffectMap Menu
 2 {
 3 Effect = ~data/scripts/effects/sound/music/menu.ofx
 4 }

The OFX file handles the actual music track, we just need to create one, like so:

Then we edit data\state\common\gcladventure.sm like so:

 5
+ 6 objEffectMap Map
+ 7 {
+ 8 Effect = ~data/scripts/effects/sound/music/map.ofx
+ 9 }
 10
 11 objEffectMap Level
 12 {
 13 Effect = ~data/scripts/effects/sound/music/level.ofx
 14 }

 1 objEffect MapMusic
 2 {
 3 Loop = true
 4 ObjectOffset = "Normal"
 5
 6 eiSound Song
 7 {
! 8 File = ~data/music/sparkleunleashed-map.ogg
 9 HandleGroup = "Music"
 10 }
 11 }

 31 StateDialog StageMap_Adventure : BaseState
 32 {
 33 Dialog = DIALOG_STAGEMAP_ADVENTURE_LUXOR
 34 TrTransInDone = gameClientLocal_Luxor::trigger_advanceLevelCb
 35
 36 Init = gameClientLocal_Luxor::init_stageMapAdventureCb
+ 37 Init = enClientLocal::setMusicPlaylist "Map"
 38
 39 Command "Cancel" gameClientLocal_Luxor::command_quitGame "StageMap_QuitGame"
 40 Command "Start" gameClientLocal_Luxor::command_startGameCb
 41 Command "SignOut" StateMachine::setState "TransToMainMenu"
 42 }

And now when you enter the stage map (not the Challenge of Horus stage map), the new map
music track should play. It should also stop playing when you return to the Main Menu.

Documentation, So Far
Common Properties
Init

A function is called on state initialization.

Term

A function is called on state termination.

Functions
StateMachine
csPushState

Pushes a state into the current stack. Used for modal dialogs (such as confirmations).

csPopState

Pops the current state pushed by csPushState and returns to the previous state.

Init = namespace::Function

Term = namespace::Function

StateMachine::csPushState "StateLabel"

StateMachine::csPopState

csPopPushState

Pops the current state, then pushes a state into the current stack.

setState

Sets the state. Used for screens, like the High Scores screen or the Achievements screen.

enClientLocal
setMusicPlaylist

Sets the currently playing music to the objEffectMap defined in music.gvf .

stopMusic

Stops any playing music.

gameClientLocal_Luxor
command_gamePauseCb

"Pause" will pause the game with the "Paused: Press Spacebar to Continue" dialog.
"Menu" will pause the game and open the pause menu that allows you to quit/exit/change
options.

command_newGameOrContinueGameCb

StateMachine::csPopPushState "StateLabel"

StateMachine::setState "StateLabel"

enClientLocal::setMusicPlaylist "Label"

enClientLocal::stopMusic

gameClientLocal_Luxor::command_newGameOrContinueGameCb "Pause" | "Menu"

⚠️ Luxor Evolved-specific.“

Checks if there's a currently running game. Else, show the difficulty selector.

State Types
StateDialog
Represents a dialog UI.

Properties
Dialog

NAME_OF_DIALOG must be defined in the target vars file (usually vars_pc.gvf).

DialogTransIn / Out

Both properties are boolean. Tells the game if the dialog should transition in or out.

EffectTransIn / Out

Both properties take a string. Uses these effects as transin/out effects.

Command

gameClientLocal_Luxor::command_newGameOrContinueGameCb "DifficultySelect"

StateDialog Label : BaseState
{
 ...
}

Dialog = NAME_OF_DIALOG

DialogTransIn = true
DialogTransOut = false

EffectTransIn = "LabelOfObjEffectMap"
EffectTransOut = "AnotherObjEffectMap"

Command "Label" namespace::Function

A function is called when the command is invoked. Must be defined in the ui file.

StateServer_Luxor
Used in gsv_*.sm files. I don't recommend you poking around gsv_*.sm and gcl_*.sm files, since they
pretty much handle the game itself.

Properties
MusicState

Sets the music state of the level.

StateServer_Luxor Label : Server_Common
{
 ...
}

⚠️ Luxor Evolved-specific.“

MusicState = "NameOfMusicState"

UI File Modification
UI files control the layout of a specific element in the game - including level backgrounds.

Objects
Every object should have it's type and an optional label, with 3 spaces as indentation:

uiFrame
A uiFrame is a container, usually used for dialog boxes. uiFrames can be adjusted with a
uiFlowLayout.

uiScrollFrame
A uiScrollFrame is just like a uiFrame. However, overflow content is clipped and scrollbars appear.

uiContainer
A uiContainer is usually used for adding props, or as an anchor for OFX files.

uiInputFrame

uiFrame theLabel
{
 uiSprite theLabel
 {

 }
}

A uiInputFrame is a container usually used for buttons or controls to change it's contents or icon
depending on the active input device, such as a mouse or a controller.

uiDialog
A uiDialog is the root of either a dialog box, or a dialog screen.

uiSpectrumFrame

A uiSpectrumFrame is a container for uiSpectrumChannels. However, it is not a direct replacement
for a uiFrame. A uiSpectrumFrame still needs to be wrapped in a uiFrame.

uiFlowLayout
A uiFlowLayout controls the layout of a uiFrame. This can be used to create grids, for example.

objEffectMap
Effect <Path> The OFX file to use.

An objEffectMap applies an OFX file to an object. It takes the object label as the event.

Example:

Valid labels are:

TransIn
TransOut
Idle

⚠️ Luxor Evolved-specific.“

objEffectMap Idle
{
 Effect = ~data/maps/town/idle.ofx
}

ShowMap
ShowMap_Bonus
HideMap
HideMap_Bonus
ContinueIn
NewLife
Announce_PU_<powerup> - LXE specific, <powerup> must be a powerup ID
Milestone_Combo_<n> - LXE specific, <n> must be of: 6 , 9 , 12

uiBackground
A uiBackground defines the background of an object. It can be a fixed size or a 9-slice background.

uiTextWidget
A uiTextWidget inserts text into a container.

uiButton
A uiButton represents a button contained by it's elements.

uiProgressBar
A uiProgressBar represents a progress bar, usually used in the level HUD to indicate a rough
amount of spheres left to destroy, or in the splash screen to indicate loading progress.

uiSprite
A uiSprite adds a sprite to a container.

Common Properties

GVF Types
Simple Types

Number: A literal number. The game engine can usually take either a float or an int.
Int64: Ending the number with an i64 means it's an int and is usually used for score
values.
String: A literal string encased in double quotation marks (").

Localized String
T("string")

Often used in UI elements.

Tuple
[1, 2, 3<,4>]

So far only used for numbers. Commonly used in UI and OFX.

General GVF Syntax
GVF files are (presumedly) "Game Variable Files" that also take on different extensions depending
on the usage:

.gvf - Game variables

.ui - UI elements

.uis - UI snippets

.ofx - Object effects

.sm - State Machine files

Objects

Includes

It doesn't have to end with txt.

Variables/Properties

To assign it globally, add global before the variable name. This is only done in vars.gvf :

objectName
{

}

path/to/whatever/you/need.txt

varname = value

global varname = value

